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In this work, we consider a stock price process subjected to idiosyncratic Lévy jumps and
global structural changes attributed to interventions due to a semi-Markov process. The
semi-Markov process decomposes both the time and state domains of the price process
into sub-intervals and price state sub-domains respectively, where a Lévy–Ito process
operates. The Lévy jumps decompose the space domain of the currently operating Lévy
process. We derive an infinitesimal generator for a stock price process and a closed form
expression for the conditional characteristic function of a log price. The former result
is used to derive a PIDE satisfied by option prices, while the latter could be used to
retrieve risk neutral densities via Fourier transform and price European vanilla options.
In the sequel, we derive the characteristic function of the residence time of a semi-Markov
process. Incompleteness of the market is exhibited through a general change of measure.
For pricing purpose, the minimum entropy martingale measure is defined as an Esscher
transform.

Keywords: Semi-Markov process; regime switching models; characteristic function;
calibration and simulation option prices; minimum entropy.

1. Introduction

The well-known model developed by Black & Scholes (1973), despite its slew of
laureates has long shown well documented weaknesses in keeping up with the styl-
ized facts of financial asset returns and option prices. Smiles, smirks and skews
are well documented empirical features of implied volatilities (Bulla 2006, Tankov
2003, Elliott et al. 2005, Jackson & Jaimungal 2009), unexplained in the context
of Black–Scholes model. Moreover, stylized facts of financial time series also cast
a doubt on the appropriateness of the normal log return distribution assumption.

∗Corresponding author.
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The literature goes about solving these issues in two main ways. The first approach
uses time dependent deterministic volatility models (Kruse 2003, Han 2006) to cap-
ture most of option market empirical properties. However, it has been shown by
González-Urteaga (2012) that risk neutral volatilities behave in a random man-
ner. This leads to the development of the second modeling approach consisting of
stochastic volatility, local volatility and regime switching models. Stochastic volatil-
ity models (Hagan et al. 2002, Heston 1993) are based on the assumption that
volatility is a dynamic process. In local volatility models (Beckers 1980, Dupire
1997), the volatility depends on time and stock price through a deterministic func-
tional. In both cases, in addition to the possibility of a misspecified functional form
of the volatility (Chourdakis 2005), the volatility surface often lacks smoothness and
at times, takes nonsensical and counterintuitive forms. One of the main advantages
of regime switching models as noted by Chourdakis (2005), is the interpretability
of the market states while disassociating with the very restrictive functional form
assumption of the local and stochastic volatility models.

The present paper is an attempt to extend the latest semi-Markov switching
models for stock price and at setting up a general theoretical framework to study
qualitative and quantitative properties of asset price processes. To the best of our
knowledge, mostly Markovian interventions on price processes are studied in Chan &
Zhu (2014b,a), Hainaut & Le Courtois (2014), Hainaut (2011), Momeya (2012),
Jackson & Jaimungal (2009) and Chourdakis (2005, 2002). Recently, stochastic
models (Preda et al. 2014, Swishchuk & Islam 2011, Hunt & Devolder 2011, Hunt &
Hahn 2010, Ghosh & Goswami 2009) under the influence of a semi-Markov process
have been examined. A Stochastic Maximum Principle for semi-Markov switching
jump diffusion models (Deshpande 2014) has been established, leaving out the class
of Lévy processes with infinite activity.

The organizational outline of the paper is as follows: In Sec. 2, we introduce
the necessary definitions and notations and we present known results. In Sec. 3, we
find a closed form solution of a Lévy type of SDE. In Sec. 4, we derive Ito differ-
ential formula and the infinitesimal generator for a class of stochastic linear hybrid
models under semi-Markovian and Lévy-type structural perturbations. Section 5
is concerned with the derivation of a closed form characteristic function of the log
price process. This is useful for recovering risk neutral densities to estimate option
prices. Moreover, this provides an alternative tool to the computationally extensive
continuous time MCMC and the two-step numerical integration procedure (Hunt &
Hahn 2010, Ghosh & Goswami 2009), for simulating option prices and calibrating
model parameters to market option prices. In Sec. 6, we exhibit a general change of
measure and two risk neutral measures of interest, namely, the minimum entropy
martingale measures and the pricing kernel discussed in Siu & Yang (2009). The
latter accounts for the regime risk, the jump risk and the Lévy risk. Section 7 is
devoted to the presentation of a couple of option price formulas. The first is the well
known Fourier transform method based on the method of Carr & Madan (1999).
The second formula is a slight modification of the integral formula developed in

1550052-2
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Ghosh & Goswami (2009). In Sec. 8, numerical illustrations are given to exhibit the
usefulness of the presented results.

2. Preliminary Definitions and Results

In this work, T � < ∞ and T ∈ [0, T �]. T � and T stand for the time horizon of
the market and the maturity time of a contingent claim, respectively; (Ω,F, P ) is a
complete probability space; θ is a semi-Markov process defined on R

+ × (Ω,F, P )
into E, where E is an at most countable subset of the set of natural numbers N and
R

+ = [0,∞). For each n ∈ N, Tn stands for the nth jump time of θ. For s ∈ [0, T ]
and θs− = j, (Lj

s−)s∈[0,T ] is the Itó Lévy process with small and big jumps G and
H and Lévy triplet (µ(j), σ(j), ν(j, )), where µ(j), σ(j) and ν(j, ) are the drift rate,
the diffusion rate and the Lévy measure, respectively. (Lt)t∈[0,T ], (Ht)t∈[0,T ] and
(Ht ∨ Lt)t∈[0,T ] are sub-algebras of F generated by the collection of Lévy processes
Lj , ∀ j ∈ E, the semi-Markov process θ and (Lθ

t , θt)t∈[0,T ], respectively. Let (βn)n≥0

and (Bt)t∈[0,T ] be a discrete-time real valued stochastic process and the sub-sigma
algebra of F adapted to the discrete process βn, respectively. We denote the enlarged
filtrations (Lt ∨Bt)t∈[0,T ] and (Ht ∨Bt)t∈[0,T ] by (L̄t)t∈[0,T ] and (H̄t)t∈[0,T ], respec-
tively. Let ψ(j, ·, ·) be the Poisson random measure with compensator ν(j, dz). It
is also assumed that the sequence (βn)n≥0 is independent of both ψ(j, ·, ·) and the
Brownian process Bt, for j ∈ E.

Definition 2.1. (Cinlar 1969) Let θ and {Tn}∞n=1 be a semi-Markov process and
its jump time sequence with T0 = 0, respectively. A couple (θn, Tn) is called a
Markov renewal process with kernel Q induced by the semi-Markov Process (θt), if
it satisfies:

P (θn = j, Tn ≤ t | (θk, Tk), k = 1, 2, . . . , n− 1)

= P (θn = j, Tn − Tn−1 ≤ t− Tn−1 | θn−1, Tn−1)

= Q(θn−1, j, t− Tn−1), (2.1)

where θn stands for θTn .

Remark 2.1. τn = Tn+1 − Tn denotes a holding time at Tn. The holding times
conditional on the current state are independent Cinlar (1969). The kernel in (2.1)
can be represented as

Q(i, j, t− Tn) = P (θn = j, Tn − Tn−1 ≤ t− Tn−1 | θn−1 = i). (2.2)

Moreover, for (θn, Tn) = (θn(t), Tn(t)), ∀ t ∈ [0, T ], where

n(t) = max{k ∈ N, Tk ≤ t}. (2.3)

In particular,

Q(i, j, t) = P (θn = j, Tn − Tn−1 ≤ t | θn−1 = i). (2.4)

1550052-3
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Furthermore, we define

pij = lim
t→∞Q(i, j, t), (2.5)

where pij is called the steady state transition probability of the embedded Markov
chain from state i to state j with i, j ∈ E and n(E) = m.

For the sake of completeness, we present survival distribution and sojourn time
distributions associated with the semi-Markov process θ.

Definition 2.2. The conditional cumulative distribution of the holding/sojourn/
residence time (respectively, survival function) given that θ transits from a state
i to state j is defined by F (t | i, j) = P (τn ≤ t | θn = j, θn−1 = i) (respectively,
S(· | i, j) = 1 − F (· | i, j)).

In the following lemma, we outline a few well known properties of semi-Markov
processes (Cinlar 1969, Ghosh & Goswami 2009).

Lemma 2.1. The kernel of the semi-Markov process defined in (2.4) is represented
by

Q(i, j, t) = pi,jF (t | i, j). (2.6)

Moreover,

S(t | i) = 1 −
∑
j∈E

pi,jF (t | i, j), (2.7)

f(r | θ0 = i)
P (T1 > s | θ0 = i)

=
− dS

dr (t | i, j)
S(s− | i) , for r ≥ s, (2.8)

λi,j(t) = pi,j

− dS
dt (t | i, j)
S(t− | i) . (2.9)

Proof. We first establish (2.6). From (2.4) we have

Q(i, j, t) = P (θn = j, Tn − Tn−1 ≤ t | θn−1 = i),

= P (θn = j | θn−1 = i)P (Tn − Tn−1 ≤ t | θn−1 = i, θn = j)

= pi,jF (t | i, j).
For the proof of (2.7), we use Definition 2.2 and (2.6).

F (t | i) = P (τn ≤ t | θn = i)

=
∑
j∈E

pi,jF (t | i, j). (2.10)

Hence,

S(t | i) = 1 −
∑
j∈E

pi,jF (t | i, j).

1550052-4
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This completes the proof of (2.7). For the proof of (2.8), for r > s, we have

f(r | θ0 = i)
P (T1 > s | θ0 = i)

, (definition of conditional density)

=
− dS

dr (r | i)
P (T1 > s | θs = i)

, (definition of survival function)

=
− dS

dr (r | i)
S(s− | i) . (2.11)

This completes the proof of (2.8). The proof of (2.9) follows from the definition of
Hazard functions and (2.6). This completes the proof of the lemma.

Remark 2.2. A homogeneous Markov process is a particular case of semi-Markov
process. Hence, Qij(t) = pij(1 − eq(i)). We also have the following relationship:

qij = pijq(i), (2.12)

where (qij)m×m is the Infinitesimal generator (intensity matrix) of a Markov pro-
cess, and (pij)m×m is its transition probability matrix defined in (2.5). The following
can also be inferred from (2.6) and (2.7):

S(t | i) = 1 −
∑
j∈E

Q(i, j, t). (2.13)

Definition 2.3. Let yt be the backward recurrence time of the semi-Markov process
θ at time t. yt is defined as follows:

yt =
∑
n≥0

(t− Tn)1(Tn≤t<Tn+1), (2.14)

where the sequence {Tn}∞n=0 is introduced in Definition 2.1.

Definition 2.4. Let ψ : R
+ × R ×R+ �→ R be the random Poisson measure with

intensity measure ν, H and G smooth functions defined on R
+ × R into R, with

G satisfying the condition:
∫

z∈R
((1 +H2(z, j))1|z|>1 +G2(z, j)1|z|≤1)ν(j, dz) <∞,

∀ j ∈ E. Moreover, ψ̄ = ψ− ν denotes the compensated Poisson measure associated
with ψ.

In the following we present a lemma, which would be used, subsequently.

Lemma 2.2. Let (an, bn) and (cn, dn) be two renewal processes defined on the
same probability space (Ω,F, P ) and state space E. Then the renewal processes have
identical transition probability matrices and sojourn time distributions, respectively.

Proof. From (2.5), it is clear that the transition probability and the holding time
distribution are completely defined by the kernel matrix. In fact, we have,

lim
t→∞Q(i, j, t) = lim

t→∞ pijF (t | i, j) = pij ,

1550052-5
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and hence,

F (t | i, j) =
Q(i, j, t)
pij

.

This establishes the result.

Lemma 2.3. Let n(t) be defined as in (2.3). The pair (θt, t − Tn(t)) is a Markov
process.

Proof. Let be s ≤ t with t ∈ [Tn, Tn+1) and s ∈ [Tm, Tm+1) (m < n). For u ≤ s,
we have:

P (θt = i, t− Tn(t) ≤ a | (θu, u− Tn(u))), (for some a ∈ R
+)

= P (θTn = i, Tn+1 − Tn ≤ a | (θu, u− Tn(u))), (for t ∈ [Tn, Tn+1))

= P (θTn = i, Tn+1 − Tn ≤ a | (θTk
, Tk), k ≤ m), (for s ∈ [Tm, Tm+1))

= P (θTn = i, Tn+1 − Tn ≤ a | θTm), (Markov renewal process property)

= P (θt = i, t− Tn(t) ≤ a | θs), (definition of n(t)).

Hence, the probability at a future time depends only on the most current informa-
tion at time s. This shows that (θt, t− Tn(t)) is a Markov process.

Remark 2.3. For the remainder of this paper θ is a semi-Markov process with jump
time Tn, with sojourn time τn = Tn+1 − Tn ∼ f(|θn, θn+1) with CDF F (|θn, θn+1)
and with survival CDF S(|θn, θn+1) = 1− F (|θn, θn+1). The semi-Markov kernel is
denoted Q(i, j, t), the backward recurrence time yt is defined in (2.14) and (pi,j)m×m

is the transition probability matrix of the embedded Markov chain.

3. Method for Finding Closed Form Solutions

In this section, we find a closed form solution of a Lévy-type Linear Stochastic Dif-
ferential Equation under semi-Markovian structural perturbations. The presented
extension is based on the procedure described in Ladde & Ladde (2013). The useful-
ness of the result is at least two-fold. It is used to establish the martingale property
for certain processes in Sec. 6. In addition, it is used to formulate a general expres-
sion for the simple return process with any Lévy and semi-Markov jump choices.
We consider the following Lévy-type SDE:

dxt = xt−dL
θ
t , x(0) = x0, (3.1)

where

dLθ
t = µ(θt)dt+ σ(θt)dBt +

∫
|z|>1

H(z, θt)ψ(θt, dz, dt)

+
∫
|z|≤1

G(z, θt)ψ̄(θt, dz, dt), (3.2)

1550052-6
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θ is the semi-Markov process defined in Sec. 2; ψ, ν G and H are in Definition 2.4.
Following the procedure described in Chapter 2, Ladde & Ladde (2013), we break
down (3.1) into the following four types of simplified SDEs:



dx1
t = x1

tµ(θt)dt

dx2
t = x2

t−σ(θt)dBt

dx3
t = x3

t−

∫
|z|>1

H(z, θt)ψ(θt, dz, dt)

dx4
t = x4

t−

∫
|z|≤1

G(z, θt)ψ̄(θt, dz, dt).

(3.3)

Imitating the procedure in Ladde & Ladde (2013), the closed form solution
processes of

dx1
t = x1

t−µ(θt)dt and dx2
t = σ(θt)x2

tdBt

are

x1
t =
[
exp
(∫ t

0

µ(θs)ds
)]

c1 and

x2
t = exp

[
−1

2

∫ t

0

σ2(θs)ds+
∫ t

0

σ(θs)dBs

]
c2,

(3.4)

respectively; c1 and c2 are arbitrary constants. We next consider the third type of
SDE in (3.3)

dx3
t = x3

t−

∫
|z|>1

H(z, θt)ψ(θt, dz, dt). (3.5)

We seek a solution of a form

x3
t = exp

[∫ t

0

∫
|z|>1

f4(z, θs)ψ(θs, dz, ds)

]
c3, (3.6)

where f4 is an unknown smooth function to be determined, and c3 is a real random
variable. The Ito integral for pure jump processes (3.6) yields

x3
t+∆t − x3

t =
∑

t≤s≤t+∆t

(x3
s − x3

s−)

=
∫ t+∆t

t

∫
|z|>1

(x3
s−ef4(z,θs−) − x3

s−)ψ(θs− , dz, ds)

=
∫ t+∆t

t

x3
s−

∫
|z|>1

(ef4(z,θs− ) − 1)ψ(θs− , dz, ds). (3.7)

As ∆t becomes very small, (3.7) reduces to

dx3
t = x1

t−

∫
|z|>1

(ef4(z,θt) − 1)ψ(θt, dz, dt). (3.8)

1550052-7
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Since x3 is solution of stochastic differential equation (3.5), we repeat the procedure
described in Ladde & Ladde (2013) and obtain

exp(f4(z, θt)) − 1 = H(z, θt). (3.9)

Hence,

f4(z, θt) = ln(1 +H(z, θt)). (3.10)

Therefore, the general solution of (3.5) is represented by

x3
t = exp

[∫ t

0

∫
|z|>1

ln(1 +H(z, θs))ψ(θs, dz, ds)

]
c3. (3.11)

x3 is almost surely finite. Finally, we find a solution of the following stochastic
differential equation

dx4
t = x4

t−

∫
|z|≤1

G(z, θt)ψ̄(θt, dz, dt). (3.12)

We seek a solution process of (3.12) in the following form:

x4
t = exp

[∫ t

0

∫
|z|≤1

f5(z, θs)ψ̄(θs− , dx, ds) +
∫ t

0

∫
|z|≤1

f6(z, θs−)ν(θs− , dz)ds

]
c4,

(3.13)

where f5 and f6 are unknown smooth functions to be determined, and c4 is a real
valued random variable. x4 in (3.12) is an exponential function semi-martingale of
the form v =

∫ t

0

∫
|z|≤1 f5(z, θs)ψ̄(θs, dx, ds) +

∫ t

0

∫
|z|≤1 f6(z, θs)ν(θs, dz)ds. Applying

the Ito formula for discontinuous semi-martingales, Applebaum (2009), we have

dx4
t =

∂x4
t

∂v
dvc +

1
2
∂2x4

t

∂v2
d(vc)d(vc) +

(
∆x4

t − ∂x4

∂L
∆L
)

= x4
t−

∫
|z|≤1

(f6(z, θt−) + exp(f5(z, θt−)) − 1 − f5(z, θt−))ν(θt− , dz)dt

+ x4
t−

∫
|z|≤1

(exp(f5(z, θt−)) − 1)ψ̄(θt− , dz, dt). (3.14)

Again, following the procedure for finding solution processes in Ladde and Ladde
(2013), we get {

f6(z, θt) + exp(f5(z, θt)) − 1 − f5(z, θt) = 0

exp(f5(z, θt)) − 1 = G(z, θt).
(3.15)

Hence, {
f5(z, θt) = ln(1 +G(z, θt))

f6(z, θt) = ln(1 +G(z, θt)) −G(z, θt).
(3.16)
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Therefore,

x4
t = exp

[∫ t

0

∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ν(θs− , dz)ds

+
∫ t

0

∫
|z|≤1

ln(1 +G(z, θs−))ψ̄(θs− , dz, ds)

]
c4. (3.17)

The product of x1 and x2 from (3.4) analog with x3 and x4 in (3.11) and (3.17),
respectively, yields the solution of initial value problem (3.1)

xt = x0 exp

[∫ t

0

[
µ(θs−) − 1

2
σ2(θs−)

+
∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ν(θs− , dz)

]
ds

+
∫ t

0

σ(θs−)dBs +
∫ t

0

∫
|z|≤1

ln(1 +G(z, θs−))ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

ln(1 +H(z, θs−))ψ(θs− , dz, ds)

]
. (3.18)

In the following, we present a few versions of (3.18).

Remark 3.1. We note that adding and subtracting∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds) and
∫ t

0

∫
|z|>1

H(z, θs−)ψ(θs− , dz, ds),

(3.18) reduces to

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs− )dBs +
∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

H(z, θs−)ψ(θs− , dz, ds) − 1
2

∫ t

0

σ2(θs−)ds

+
∫ t

0

∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ν(θs− , dz)ds

+
∫ t

0

∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ψ̄(θs− , dz)

+
∫ t

0

∫
|z|>1

[ln(1 +H(z, θs−)) −H(z, θs−)]ψ(θs− , dz, ds)

]
. (3.19)
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Moreover, adding and subtracting∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds),

∫ t

0

∫
|z|>1

H(z, θs−)ψ̄(θs− , dz, ds), and

∫ t

0

∫
|z|>1

H(z, θs−)ν(θs− , dz)ds,

(3.18) becomes

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs−)dBs +
∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

H(z, θs−)ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

ln(H(z, θs−) + 1)ν(θs− , dz)ds− 1
2

∫ t

0

σ2(θs−)ds

+
∫ t

0

∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ν(θs− , dz)ds

+
∫ t

0

∫
|z|>1

[ln(1 +H(z, θs−)) −H(z, θs−)]ψ̄(θs− , dz, ds)

]
. (3.20)

In the following remark, we take a look at a few particular cases of interest which
will be used, subsequently.

Remark 3.2. If H(z, θs), G(z, θs) and Lθ
s in (3.2) are replaced by eH(z,θs) − 1,

eG(z,θs) − 1 and

dLθ
s = µ(θs)ds+ σ(θs)dBs +

∫
|z|≤1

[eG(z,θs) − 1]ψ̄(θs, dz, ds)

+
∫
|z|>1

[eH(z,θs) − 1]ψ(θs, dz, ds), (3.21)

respectively, then the solution of the IVP (3.1) in (3.18), (3.19) and (3.20) reduce
to

xt = x0 exp

[ ∫ t

0

[
µ(θs−) − 1

2
σ2(θs−)

+
∫
|z|≤1

[G(z, θs−) + 1 − eG(z,θs−)]ν(θs− , dz)

]
ds
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+
∫ t

0

σ(θs−)dBs +
∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

H(z, θs−)ψ(θs− , dz, ds)

]
, (3.22)

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs−)dBs

+
∫ t

0

∫
|z|≤1

[eG(z,θs−) − 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[eH(z,θs− ) − 1]ψ(θs− , dz, ds) − 1
2

∫ t

0

σ2(θs−)ds

+
∫ t

0

∫
|z|≤1

[G(z, θs−) − eG(z,θs−) + 1]ν(θs− , dz)ds

+
∫ t

0

∫
|z|≤1

[G(z, θs−) − eG(z,θs−) + 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[H(z, θs−) − eH(z,θs− ) + 1]ψ(θs− , dz, ds)

]
, (3.23)

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs−)dBs

+
∫ t

0

∫
|z|≤1

[eG(z,θs−)−1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[eH(z,θs− ) − 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

H(z, θs−)ν(θs− , dz)ds− 1
2

∫ t

0

σ2(θs−)ds

+
∫ t

0

∫
|z|≤1

[G(z, θs−) − eG(z,θs−) + 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|≤1

[G(z, θs−) − eG(z,θs−) + 1]ν(θs− , dz)ds

+
∫ t

0

∫
|z|>1

[H(z, θs−) − eH(z,θs− ) + 1]ψ̄(θs− , dz, ds)

]
. (3.24)
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In addition, if µ(θs) in (3.2) is replaced by [µ(θs) + 1
2σ

2(θs) +
∫
|z|≤1

[eG(z,θs) − 1 −
G(z, θs)]ν(θs, dz)], then (3.22), (3.23) and (3.24), respectively, reduce to

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs−)dBs

+
∫ t

0

∫
|z|≤1

G(θs− , z)ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

H(θs− , z)ψ(θs− , dz, ds)

]

= x0 exp[Lθ
t ], (3.25)

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs−)dBs

+
∫ t

0

∫
|z|≤1

[eG(z,θs−) − 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[eH(z,θs− ) − 1]ψ(θs− , dz, ds)

+
∫ t

0

∫
|z|≤1

[G(z, θs−) − eG(z,θs−) + 1]ψ̄(θs− , dz)

+
∫ t

0

∫
|z|>1

[H(z, θs−) − eH(z,θs− ) + 1]ψ(θs− , dz, ds)

]
,

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs−)dBs

+
∫ t

0

∫
|z|≤1

[eG(z,θs−) − 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[eH(z,θs− ) − 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[eH(z,θs− ) − 1]ν(θs− , dz)ds

+
∫ t

0

∫
|z|≤1

[G(z, θs−) − eG(z,θs−) + 1]ψ(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[H(z, θs−) − eH(z,θs− ) + 1]ψ̄(θs− , dz, ds)

]
, (3.26)

where Lθ is defined in (3.2). Moreover, if µ(θt−) in (3.1) is replaced by [µ(θs−) +
1
2σ

2(θs−) +
∫
|z|≤1[e

G(z,θs−) − 1 −G(z, θs−)]ν(θs− , dz) +
∫
|z|>1H(z, θs−)ν(θs− , dz)],
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then (3.24) reduces to

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs−)dBs

+
∫ t

0

∫
|z|≤1

[eG(z,θs−)−1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[eH(z,θs− ) − 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|≤1

[G(z, θs−) − eG(z,θs−) + 1]ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

[H(z, θs−) − eH(z,θs− ) + 1]ψ̄(θs− , dz, ds)

]
. (3.27)

4. Ito Differential Formula

In this section, we define the asset price model and we derive the infinitesimal
generator of the quadruplet (t, y, θ, x). We denote Lθ the Itó Lévy process with
small and big jumps G and H and Lévy triplet

(
µ(θt), σ(θt), ν(θt, dz)

)
defined (3.2).

Following the argument used in Ladde & Ladde (2013), we define a linear stochastic
hybrid dynamic model for stock price process under structural perturbations of
semi-Markov and Lévy processes.

Definition 4.1. A linear stochastic hybrid dynamic model under semi-Markov and
Lévy structural perturbations is defined as follows:{

dx(t) = x(t−)dLθn
t , x(Tn) = xn, t ∈ [Tn, Tn+1)

xn = βnx(T−
n , Tn−1, xn−1), x(0) = x0, n ∈ I(1,∞) = N,

(4.1)

where {Tn}∞n=1 is an increasing sequence of jump/regime switching times of the
semi-Markov process θ with T0 = 0 introduced in Definition 2.1; for n ∈ I(0,∞) =
{0, 1, 2, 3, . . .}, βn denotes the discrete time state jump process caused by the semi-
Markov process from state θn−1 at Tn−1 to θn at Tn; it is denoted βn = βθn−1,θn ,
highlighting the assumption that semi-Markov jump distributions depend only on
the previous and current market states. The density function of βi,j is b(· | i, j) and
Lθ

t is defined in (3.2).

Remark 4.1. A few observations about the model in the context of Remark 3.2
are in order. The solution of (4.1) can be described by the following discrete time
iterative process Ladde & Ladde (2013)


x(t, Tn, xn) = xn exp

[∫ t

Tn

dLθn
s

]
, t ∈ [Tn, Tn+1)

xn = βnx(T−
n , Tn−1, xn−1),

(4.2)
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where Lθ
t is defined as the exponent of the solution process of (3.1) as expressed

in (3.25). The semi-Markov process decomposes both the time and state domains
causing structural changes in the stock price process, while the Lévy process directly
decomposes the state domain of definition of the stochastic dynamic model.

Remark 4.2. From (3.25) and (4.1), the size of the jump in log price at time Tn

is ln(βn). The density function of ln(βn) is described by

b̄(z | θn−1, θn) = b(ez | θn−1, θn)ez, (4.3)

where b(· | θn−1, θn) denotes the density of βn and e is the Naperian base. We further
note that the discrete time dynamic system in (4.2) is an intervention process. A
feature of interest of this model is its potential to capture, simultaneously, three
important stylized facts. The volatility clustering exhibited in log return time series,
the slowly decaying autocorrelation of square returns and the observed correlation
between log returns and volatility (Chourdakis 2005, Bulla 2006). As the market
switches from one state to another, the diffusion rate changes while the asset price
is subjected to a jump. Thus the diffusion rate and the price jumps are modulated
by the process θ.

For the development of an infinitesimal generator, in the following, we define
a point process encoding both the regime switches and the jumps of x at regime
switches. At each regime change, we note that the jump in log price is ln(βn). We
define E2 = {(i, j), (i, j) ∈ E × E, i 
= j} and the power set of E2, P(E2). B(R) is
the Borel sigma algebra of the real line. We are ready to define the aforementioned
point process.

Definition 4.2. βn and θn are introduced in Definition 4.1. Let N(t, A,B) be a
stochastic process defined on [0, T ]× B(R) × P (E2) into (0,∞) as

N(t, A,B) =
∑
n≥1

1(t≥Tn,ln(βn)∈A,(θn−1,θn)∈B), (4.4)

and N(t, A,B) stands for the number of regime switches in B with corresponding
log price jumps ln(βn) ∈ A by time t.

Remark 4.3. We observe that

N(t, A,B) =
∑

(i,j)∈B

N(t, A, {(i, j)}), (4.5)

where N(t, A, {(i, j)}) counts the number of regime switches from i to j with cor-
responding log price jump ln(βn) ∈ A.

In the following lemma, we derive the predictable compensator process for
N(t, A, {(i, j)}).
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Lemma 4.1. Let N(t, A, {(i, j)}) be the point process introduced in Definition 4.2.
Then

N(t ∧ Tn, A, {(i, j)}) − γ(t ∧ Tn, A, {(i, j)}) (4.6)

is a martingale with respect to the filtration (H̄t)t≥0, ∀n ∈ I(1,∞), where

γ(t, A, {(i, j)}) =
∫ t

0

∫
z∈A

b̄(z | i, j)λi,j(ys)dzds, (4.7)

and λi,j are defined in (2.9).

Proof. From Brémaud (1981), Siu & Ladde (2011), it is enough to prove that
N(t ∧ Tn, A, {(i, j)}) − γ(t ∧ Tn, A, {(i, j)}) is an

(
H̄s

)
s≥0

-martingale. For any 0 ≤
s ≤ t and for each n ∈ I(1,∞), it satisfies

E[[N(t ∧ Tn, A, {(i, j)}) − γ(t ∧ Tn, A, {(i, j)})]
− [N(s ∧ Tn, A, {(i, j)}) − γ(s ∧ Tn, A, {(i, j)})] | H̄s] = 0 (4.8)

and if and only if

E(N(t ∧ Tn, A, {(i, j)}) −N(s ∧ Tn, A, {(i, j)}) | H̄s)

= E(γ(t ∧ Tn, A, {(i, j)}) − γ(s ∧ Tn, A, {(i, j)}) | H̄s). (4.9)

We prove that (4.9) holds. We first prove that (4.9) holds when the jump process
N is stopped at T1. We then prove by the Principle of Mathematical Induction
that (4.9) is true when N is stopped at time Tn. From Definition 4.2, (2.5) and for
0 ≤ s ≤ t, we have

E(N(t ∧ T1, A, {(i, j)}) −N(s ∧ T1, A, {(i, j)}) | H̄s)

=



E(1(T1≤t,ln(β1)∈A,θ1=j,θ0=i) − 1(T1≤s,ln(β1)∈A,θ1=j,θ0=i) | θ0, T1 > s),

for T1 > s

0, for T1 ≤ s,

= 1(T1>s)E(1(T1≤t,ln(β1)∈A,θ1=j,θ0=i) − 1(T1≤s,ln(β1)∈A,θ1=j,θ0=i) | θ0, T1 > s)

= 1(T1>s)E(1(s≤T1≤t,ln(β1)∈A,θ1=j,θ0=i) | θ0, T1 > s)

= 1(T1>s)1(θ0=i)
P (s ≤ T1 ≤ t, ln(β1) ∈ A, θ1 = j | θ0 = i)

P (T1 > s | θ0 = i)

= 1(T1>s)1(θ0=i)pij
P (s ≤ T1, ln(β1) ∈ A | θ1 = j, θ0 = i)

S(s | i)

− 1(T1>s)1(θ0=i)pij
P (t ≤ T1, ln(β1) ∈ A | θ1 = j, θ0 = i)

S(s | i)
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= 1(T1>s)1(θ0=i)P (ln(β1) ∈ A | ln(β1)i, j)pij
P (s ≤ T1 | θ0 = i, θ1 = j)

S(s | i)

− 1(T1>s)1(θ0=i)P (ln(β1) ∈ A | ln(β1)i, j)pij
P (t ≤ T1 | θ0 = i, θ1 = j)

S(s | i)

= 1(T1>s)1(θ0=i)pijP (ln(β1) ∈ A | θ0 = i, θ1 = j)
−∆S(t | i, j)
S(s | i) , (4.10)

where ∆S(t | i, j) = S(t | θ0 = i, θ1 = j) − S(s | θ0 = i, θ1 = j), with S(· | i, j) denot-
ing the conditional survival distribution of sojourn time when the process switches
from i to j. From (2.8), (2.9) and (4.3), we have

E[N(t ∧ T1, A, {i, j})−N(s ∧ T1, A, {i, j})]

=
∫ t

s

∫
z∈A

1(T1>s)1(θ0=i)b̄(z | i, j)λi,j(yu)dudz. (4.11)

On the other hand, from (4.7) and (2.8), we obtain

E[γ(t ∧ T1, A, {(i, j)})− γ(s ∧ T1, A, {(i, j)}) | H̄s]

= 1(θ0=i)1T1>sE

[∫
z∈A

∫ t∧T1

0

b̄(z | i, j)λi,j(yu)dudz

−
∫

z∈A

∫ s∧T1

0

b̄(z | i, j)λi,j(yu)dudz | H̄s

]

= 1T1>s1(θ0=i)E

[∫ T1∧t

T1∧s

P (ln(β1) ∈ A | i, j)λi,j(yu)du |T1 > s, θ0 = i

]
,

(Fubini’s theorem)

= 1T1>s1(θ0=i)

∫ ∞

s

∫ T1∧t

T1∧s

P (ln(β1) ∈ A | i, j)λi,j(yu)du
−dS(r | θ0 = i)
S(s | θ0 = i)

= 1T1>s1(θ0=i)

[∫ t

s

∫ r∧t

r∧s

P (ln(β1) ∈ A | i, j)λi,j(yu)du
−dS(r | θ0 = i)
S(s | θ0 = i)

+
∫ ∞

t

∫ r∧t

r∧s

P (ln(β1) ∈ A | i, j)λi,j(yu)du
−dS(r | θ0)
S(s | θ0 = i)

]

= 1T1>s1(θ0=i)

[
− 1
S(s | i, j)

∫ t

s

∫ r

s

P (ln(β1) ∈ A | i, j)λi,j(yu)dudS(r | θ0)

+
∫ ∞

t

[∫ t

s

P (ln(β1) ∈ A | i, j)λi,j(yu)du
] −dS(r | θ0 = i)

S(s | θ0 = i)

]
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= 1T1>s1(θ0=i)


− 1

S(s | θ0 = i)

∫ t

s

∫ r

s

P (ln(β1) ∈ A | i, j)λi,j(yu)dS(r | θ0)du

+
∫ t

s


∫ ∞

t

−dS(r | θ0 = i)
S(s | θ0 = i)︸ ︷︷ ︸


P (ln(β1) ∈ A | i, j)λi,j(yu)du




= 1T1>s1(θ0=i)

[
− 1
S(s | θ0 = i)

∫ t

s

P (ln(β1) ∈ A | i, j)λi,j(yu)

×
[∫ t

u

dS(r | θ0 = i)

]
du

+
S(t | θ0 = i)
S(s | θ0 = i)

∫
[s,t]

P (ln(β1) ∈ A | i, j)λi,j(u)du

]

= 1T1>s1(θ0=i)P (ln(β1) ∈ A | i, j)
[

1
S(s | θ0 = i)

∫ t

s

λi,j(yu)
[
S(u | θ0 = i)

−S(t | θ0 = i)
]
du +

S(t | θ0 = i)
S(s | θ0 = i)

∫ t

s

λi,j(yu)du
]

= 1T1>s1(θ0=i)
P (ln(β1) ∈ A | i, j)

S(s | θ0 = i)

∫ t

s

λi,j(u)S(u | θ0 = i)du

= 1T1>s1(θ0=i)pij
P (ln(β1) ∈ A | i, j)

S(s | θ0 = i)

∫ t

s

S(u | θ0 = i)
−dS(u | i, j)
S(u | θ0 = i)

= 1T1>s1(θ0=i)pijP (ln(β1) ∈ A | i, j)S(s | i, j)− S(t | i, j)
S(s | i) . (4.12)

From (4.10) and (4.12), we get

E(γ(t ∧ T1, A, {(i, j)}) − γ(s ∧ T1, A, {(i, j)}) | H̄s)

= 1T1>s1(θ0=i)pijP (ln(β1) ∈ A | i, j)S(s | i, j)− S(t | i, j)
S(s | θ0)

= E(N(t ∧ T1, A, {(i, j)})−N(s ∧ T1, A, {(i, j)}) | H̄s).

This establishes (4.9). Hence, the stopped point process N(t ∧ T1, A, {(i, j)}) has
predictable compensator γ(t∧T1, A×{(i, j)}) defined in (4.7). Assuming that (4.8)
is valid for some k ∈ I(1,∞), and repeating the above argument, we verify the
induction assumption. By the principle of mathematical induction, we conclude
that N((t ∧ Tk, t ∧ Tk+1], A, {(i, j)})− γ(t ∧ Tk, t ∧ Tk+1], A, {(i, j)}) is an (H̄t)t>0-
martingale.

Prior to turning our attention to the infinitesimal generator, we first establish
Ito differential formula for (4.1).
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Theorem 4.1 (Ito Differential Formula). Let V ∈ C[R+ ×R
+ ×R

+ ×R,R] be
continuously differentiable in the first and second variables and twice continuously
differentiable function in the fourth variable. Let x, y, N and γ be stochastic pro-
cesses defined in (4.1), (2.14), (4.4) and (4.7), respectively. Moreover, processes N
and ψ do not jump simultaneously P -almost surely. Then

dV (s, ys− , θs− , xs−)

= (LV )(s, ys− , θs− , xs−)ds+ σ(θs−)xs−
∂V

∂x
dBs

+
∫
|z|≤1

[V (s, ys, θs, xs− + xs−G(z, θs)) − V (ys, θs, xs−)]ψ̄(θs, dz, ds)

+
∫
|z|>1

[V (s, ys, θs, xs− + xs−H(z, θs)) − V (s, ys, θs, xs−)]ψ̄(θs, dz, ds)

+
∫

z∈R

∑
j∈E\{θs−}

{V (s, ys, j, xs−ez)

−V (s, ys− , θs− , xs−)}Ñ(ds, dz, {(θs− , j)}), (4.13)

for θs− ∈ E, where

LV (s, ys− , θs− , xs−) =
∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x
+

1
2
σ2(θs−)x2

s−
∂2V

∂x2

+
∫
|z|≤1

[
V (s, ys− , θs− , xs− + xs−G(z, θs−))

−V (s, ys− , θs− , xs−) −G(z, θs−)xs−
∂V

∂x

]
ν(θs− , dz)

+
∫
|z|>1

[V (s, ys− , θs− , xs− + xs−H(z, θs−))

−V (s, ys− , θs− , xs−)]ν(θs− , dz)

+
∫

z∈R

∑
j �=θs−

λθs− ,j(ys−)[V (s, ys− , j, xs−ez)

−V (s, ys− , θs− , xs−)]b̄(z | θs− , j)dz, (4.14)

θs− ∈ E and Ñ = N − γ.

Proof. Let V be defined as in the theorem. Let {Tn}∞n=1 be a sequence of semi-
Markov jump times and T0 = 0. For t ∈ R

+, we can find an interval [Tn, Tn+1]
such that Tn ≤ t < t + ∆t ≤ Tn+1 for some n ∈ N. Let {Jn

j }kn

j=0 ⊂ [Tn, Tn+1]
and Jn

0 = Tn be a finite sequence of jump times due to the Lévy jump process for
kn ∈ N. We further note that the interval can be rewritten as

[Tn, Tn+1] = [Tn, T
−
n+1] ∪ [T−

n+1, Tn+1]. (4.15)
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We observe that [Jn
j , J

n−
j+1] ∩ [Jn−

j+1, J
n
j+1] = ∅. In addition,

[Tn, T
−
n+1] =

kn⋃
j=0

([Jn
j , J

n−
j+1] ∪ [Jn−

j+1, J
n
j+1]). (4.16)

It is known that the state dynamic process operating under the above stated
conditions decomposes into three parts, namely, the continuous time, the Lévy jump
time and the semi-Markov jump time. In fact, the solution process of (4.1)/(3.1)
can be rewritten as

xt = xc
t + xd

t + xs
t , (4.17)

where xc
t , xd

t and xs
t are due to the presence of continuous process, Lévy process

and semi-Markov process, respectively. We further observe that for s ∈ [Tn, Tn+1],
we have: s = s− + (s − s−) = s− + ∆s, where ∆s = s − s−, s− 
= s. From
Definitions 2.3, 4.1, we note that ys = ys− and θs = θs− for s ∈ [Tn, T

−
n+1] and for

s = Tn+1, s 
= s−, ys− 
= ys and θTn+1 
= θs− . Moreover, there is a j ∈ I(1, kn − 1)
such that s ∈ [Jn

j , J
n
j+1] ∪ [Jn

kn
, T−

n+1]. We choose ∆s so that s + ∆s ∈ [Jn
j , J

n
j+1].

For these choices of s and s+ ∆s, we have

ys+∆s = ys− + ∆s

θs+∆s = θs−

xs+∆s = xs− + ∆xs
s,

(4.18)

Furthermore,

∆xs =




∆xc
s, if s ∈ [Jn

j , J
n
j+1) ∪ [Jn

kn
, Tn+1),

for j ∈ I(0, kn − 1) and n ∈ I(0,∞)

∆xd
s , if s = Jn

j+1, for j ∈ I(1, kn − 1)

∆xs
s, if s = Tn+1

(4.19)

(4.19) implies that for s,∆s ∈ [Jn
j , J

n
j+1), the change in state dynamic process is in

the absence of the influence of Lévy jump process. On the other hand, for s = Jn
j for

each j ∈ I(1, kn), the dynamic process is interrupted by the presence of Lévy jumps.
Finally, if s = Tn+1, then the dynamic system undergoes a structural change. Here
the structural change is under the influence of the semi-Markov process. Therefore,
there is no contribution of the continuous time dynamic process.

Based on the nature of the dynamic process operating under continuous time
process, semi-Markov process and Lévy process, we compute the change in the
auxiliary function V as

V (s+ ∆s, ys+∆s, θs+∆s, xs+∆s) − V (s, ys, θs, xs) (4.20)

in the context of state dynamic model (3.1).
The computation of change in (4.20) depends on the computation of changes over

the time domain of decomposition of [Tn, Tn+1] for n ∈ I(0,∞). For computation
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on
⋃kn−1

j=0 [Jn
j , J

n−
j+1] ∪ [Jn

kn
, Tn+1], we utilize the generalized mean value theorem.

For this purpose, we pick s, s + ∆s ∈ [Jn−
j , Jn

j+1) ⊂ [Tn, T
−
n ]. From (4.18), the

computation of (4.20) on the time domain
⋃kn

j=0[J
n
j , J

n−
j+1] ∪ [Jn

kn
, Tn+1] regarding

the continuous part of state dynamic (4.1)/(3.1) is as follows: The decomposition
of three subsets of time domain [Tn, Tn+1], namely,

⋃kn

j=0[J
n
j , J

n−
j+1]∪ [Jn

kn
, T−

n+1], or⋃kn

j=1[J
n−
j+1, J

n
j+1], or [T−

n+, Tn+1] for n, kn ∈ I(0,∞).

V (s+ ∆s, ys+∆s, θs+∆s, xs+∆s) − V (s, ys, θs, xs)

=
∫ 1

0

[
∂V

∂s
(s+ η∆s, ys + η∆s, θs, xs + η∆xs)∆s

+
∂V

∂y
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs)∆ys

+
∂V

∂x
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs)∆xs

]
dη

=
∂V

∂s
(s, ys, θs, xs)∆s+

∂V

∂y
(s, ys, θs, xs)∆ys +

∂V

∂x
(s, ys, θs, xs)∆xs

+
∫ 1

0

[
∂V

∂x
(s+ η∆s, ys + η∆s, θs, xs + η∆xs) − ∂V

∂x
(s, ys, θs, xs)

]
∆xsdη

+ εs,y(∆s), (4.21)

where

εs,y(∆s)

=
∫ 1

0

[
∂V

∂s
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs) − ∂V

∂s
(s, ys, θs, xs)

]
∆sdη

+
∫ 1

0

[
∂V

∂y
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs) − ∂V

∂y
(s, ys, θs, xs)

]
∆ysdη.

(4.22)

We again apply the generalized mean value theorem to the integrand in (4.21), and
we obtain

∂V

∂x
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs) − ∂V

∂x
(s+ η∆s, ys + η∆ys, θs, xs)

=
∂2V

∂x2
(s, ys, θs, xs)η∆xs +

∫ 1

0

[
∂2V

∂x2
(s+ ∆s, ys + η∆ys, θs, xs + εη∆xs)

− ∂2V

∂x2
(s, ys, θs, xs)

]
∆xsηdε. (4.23)
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From (4.23), the fourth term in (4.21) reduces to∫ 1

0

[
∂V

∂x
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs) − ∂V

∂x
(s, ys, θs, xs)

]
∆xsdη

=
1
2
∂2V

∂x2
(s, ys, θs, xs)(∆xs)2 + εx(∆s), (4.24)

where

εx(∆s) =
∫ 1

0

∫ 1

0

[
∂2V

∂x2
(s+ ∆s, ys + η∆ys, θs, xs + εη∆xs) − ∂2V

∂x2
(s, ys, θs, xs)

]
× (∆xs)2ηdηdε

+
∫ 1

0

[
∂V

∂x
(s+ η∆s, ys + η∆ys, θs, xs) − ∂V

∂x
(s, ys, θs, xs)

]
dη∆xs.

From (4.21) and (4.24), we have

V (s+ ∆s, ys + ∆ys, θs+∆s, xs+∆s) − V (s, ys, θs, xs)

=
∂V

∂s
(s, ys, θs, xs)∆s+

∂V

∂y
(s, ys, θs, xs)∆ys +

∂V

∂x
(s, ys, θs, xs)∆xs

+
1
2
∂2V

∂x2
(s, ys, θs, xs)(∆xs)2 + ε(∆s), (4.25)

where ε(∆s) = εs,y(∆s) + εx(∆s). The expressions in (4.21), (4.23) and (4.24) are
valid for all s ∈ [Jn

j , J
n−
j+1] ∪ [Jn

kn
, T−

n+1] and for all j ∈ I(1, kn − 1) and hence they
are valid on the intervals [Tn, Tn+1) for n, kn ∈ I(0,∞).

Using Lévy integrals and a single jump value, we compute (4.20) under the
influence of Lévy jump process. For this case, we first compute V (Jn

j+1)−V (Jn−
j+1),

where V (Jn
j+1) = V (s ∧ Jn

j+1, ys∧Jn
j+1
, θs∧Jn

j+1
, xs∧Jn−

j+1
+ xs∧Jn−

j+1
G(z, θs∧Jn

j+1
)) and

V (Jn−
j+1) = V (s, ys− , θs− , xs−).
We set and compute:

V (s ∧ Jn
j+1) − V (s ∧ Jn−

j+1)

= [V (s ∧ Jn
j+1, ys∧Jn

j+1
, θs∧Jn

j+1
, xs∧Jn−

j+1
+ xs∧Jn−

j+1
G(z, θs∧Jn

j+1
))

−V (s, ys− , θs− , xs−)]ψ(θs− ,∆z,∆s)

+ [V (s ∧ Jn
j+1, ys∧Jn

j+1
, θs∧Jn

j+1
, xs∧Jn−

j+1
+ xs∧Jn−

j+1
H(z, θs∧Jn

j+1
))

−V (s, ys− , θs− , xs−)
]
ψ(θs− ,∆z,∆s). (4.26)

From (4.26), for any s ∈ [Jn−
j+1, J

n
j+1], j ∈ I(0, kn − 1) and n, kn ∈ I(0,∞) we have

V (s ∧ Jn
j+1) − V (s ∧ Jn−

j+1)

=
∫ s+∆s

s

∫
|z|≤1

[V (s, ys, θs, xs− + xs−G(z, θs)) − V (s, ys, θs, xs−)]ψ(θs, dz, ds)
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+
∫ s+∆s

s

∫
|z|>1

[V (s, ys, θs, xs− + xs−H(z, θs)) − V (s, ys, θs, xs−)]

×ψ(θs, dz, ds). (4.27)

The expression in (4.27) is over a subinterval
⋃kn−1

j=0 [Jn−
j+1, J

n
j+1] of [Tn, Tn+1].

Finally, for s ∈ [T−
n+1, Tn+1], and imitating the above argument, we compute (4.20)

under the presence of semi-Markov jump as follows:

V (s ∧ Tn+1, ys∧Tn+1, θs∧Tn+1 , xs∧T−
n+1

+ ∆xs∧T−
n+1

)

−V (s ∧ T−
n+1, ys∧T−

n+1
, θs∧T−

n+1
, xs∧T−

n+1
)

= V (s ∧ Tn+1, ys∧T−
n+1+∆s, θs∧T−

n+1+∆s, xs∧T−
n+1

ez) − V (s, ys− , θs− , xs−)

=
∫ s+∆s

s

∫
z∈R

[V (u, yu− , θu− , xu−ez)

−V (u, yu− , θu− , xu−)]N(ds, dz, {θT−
n+1

, θTn+1}), (4.28)

hence, adding and subtracting∫ s+∆s

s

∫
z∈R

[V (u, yu− , θu− , xu−ez) − V (u, yu− , θu− , xu−)]γ(ds, dz, {θu− , θu}),

we obtain

V (s ∧ Tn+1, ys∧Tn+1 , θs∧Tn+1 , xs∧T−
n+1

+ ∆xs∧T−
n+1

)

−V (s ∧ T−
n+1, ys∧T−

n+1
, θs∧T−

n+1
, xs∧T−

n+1
)

=
∫ s+∆s

s

∫
z∈R

[V (u, yu− , θu− , xu−ez) − V (u, yu− , θu− , xu−)]γ(du, dz, {θu− , θu})

+
∫ s+∆s

s

∫
z∈R

[V (u, yu− , θu− , xu−ez)−V (u, yu− , θu− , xu−)]Ñ(du, dz, {θu− , θu}).
(4.29)

This expression is on [T−
n+1, Tn+1] for n ∈ I(0,∞). From (4.25), (4.27) and (4.29),

(4.20) reduces to

V (s+ ∆s, ys+∆s, θs+∆s, xs+∆s) − V (s, ys, θs, xs)

=
∂V

∂s
(s, ys, θs, xs)∆s+

∂V

∂y
(s, ys, θs, xs)∆ys +

∂V

∂x
(s, ys, θs, xs)∆xs

+
1
2
∂2V

∂x2
(s, ys, θs, xs)(∆xs)2
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+
∫ s+∆s

s

∫
|z|≤1

[V (u, yu, θu, xu− + xu−G(z, θu−))

−V (u, yu− , θu− , xu−)]ψ(θu, dz, du)

+
∫ s+∆s

s

∫
|z|>1

[V (u, yu, θu, xu− + xu−H(z, θu−))

−V (u, yu− , θu− , xu−)]ψ(θu, dz, du)

+
∫ s+∆s

s

∫
z∈R

∑
θu∈E\{θu−}

[V (u, yu− , θu− , xu−ez)

−V (u, yu− , θu− , xu−)]γ(ds, dz, {θu− , θu})

+
∫ s+∆s

s

∫
z∈R

[V (u, yu− , θu− , xu−ez)

−V (u, yu− , θu− , xu−)]Ñ(ds, dz, {θu− , θu}) + ε(∆s). (4.30)

For small ∆s, applying the concepts of stochastic differentials Applebaum (2009),
adding and subtracting∫ s+∆s

s

∫
|z|>1

[V (u, yu, θu, xu− + xu−H(z, θu−))

−V (u, yu− , θu− , xu−)]ν(θu− , dz)du and∫ s+∆s

s

∫
|z|≤1

[V (u, yu, θu, xu− + xu−G(z, θu−))

−V (u, yu− , θu− , xu−)]ν(θu− , dz)du,

(4.30) reduces to

dV (s, ys− , θs− , xs−) = LV (s, ys− , θs− , xs−)ds+ σ(θs−)xs−
∂V

∂x
(s, ys, θs, xs)dBs

+
∫
|z|>1

[V (s, ys, θs, xs− + xs−H(z, θs−)xs− )

−V (s, ys− , θs− , xs−)]ψ̄(θs, dz, ds)

+
∫
|z|≤1

[V (s, ys, θs, xs− + xs−G(z, θs−)xs−)

−V (s, ys− , θs− , xs−)]ψ̄(θs, dz, ds)

+
∫

z∈R

[V (s, ys− , θs− , xs−ez)

−V (s, ys− , θs− , xs−)]Ñ(ds, dz × {θs− , θs}). (4.31)
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This establishes Ito differential formula (4.13) for Lévy type stochastic differential
equation under semi-Markovian structural perturbations. Here L in (4.14) is the
linear differential operator relative to (4.1).

In the following, based on Theorem 4.1, we present a concept of infinitesimal
generator and a few results as special cases.

Definition 4.3. For the function V defined in Theorem 4.1 and using (4.30), an
infinitesimal generator of (4.1) is defined by

lim
∆t→0

[
1

∆t
E[V (t+ ∆t, yt+∆t, θt+∆t, xt+∆t)

−V (t, yt, θt, xt) | yt = yt− , θt = θt− , xt = xt− ]
]

= AV (t, yt− , θt− , xt−), for θt− ∈ E. (4.32)

Moreover, a one parameter family of semi-group is generated by

∂V

∂t
(t, yt− , θt− , xt−) = AV (t, yt− , θt− , xt−), (4.33)

where A = L in (4.13) and ∂V
∂t (t, yt, θt, xt) is the conditional partial derivative

defined by the left-hand side of (4.32).

We present special cases of the developed infinitesimal generator in Defini-
tion 4.3.

Remark 4.4. From Remark 3.2, the infinitesimal generator A defined in (4.32)
extends the earlier work in a systematic way. In fact, this generator includes
the infinitesimal generator influenced by finite state Markov chain (Elliott et al.
2005, Chourdakis 2005). Moreover, it also includes the generator influenced by a
finite state semi-Markov process (Ghosh & Goswami 2009, Hunt & Hahn 2010,
Swishchuk & Islam 2011). If H and G are replaced by eG − 1 and eH − 1, then A
in (4.32) in the context of (4.14) is

AV (s, ys− , θs− , θs, xs−)

=
∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x
+

1
2
x2

s−σ2(θs−)
∂2V

∂x2

+
∫
|z|≤1

[
V (s, ys− , θs− , θs, xs− + xs− [eG(z,θs−) − 1])

−V (s, ys− , θs− , θs, xs−) − xs− [eG(z,θs−) − 1]
∂V

∂x

]
ν(θs− , dz)

+
∫
|z|>1

[V (s, ys− , θs− , θs, xs− + xs− [eH(z,θs− ) − 1])
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−V (s, ys− , θs− , θs, xs−)]ν(θs− , dz)

+
∫

z∈R

∑
θs∈E,θs �=θs−

λθs−,θs
(ys)[V (s, ys− , θs, xs−ez)

−V (s, ys− , θs− , xs−)]b̄(z | θs− , θs)dz.

A few notes on the nature of the infinitesimal operator.

Remark 4.5. We further remark that the infinitesimal generator defined in (4.32)
can be rewritten in a m × m matrix form. In fact the partial differential equa-
tions in (4.33) are a system of partial differential equations of dimension m. More
precisely, (4.33) is a linear system of partial differential equations with variable
coefficients.

Remark 4.6. For V (t, yt, θt, xt) = xt, the conclusion of Theorem 4.1 reduces to

dxt = LV (t, yt− , θt− , xt−)dt+ σ(θ−t )dBt +
∫
|z|≤1

xt−G(z, θt−)ψ̄(θt− , dz, dt)

+
∫
|z|>1

xt−H(z, θt−)ψ̄(θt− , dz, dt)

+
∫

z∈R

∑
j∈E\{θt−}

[xt−(ez − 1)N̄(dt, dz, {(θt− , j)})], (4.34)

where

LV (t, yt− , θt− , xt−)

= xt−

[
µ(θt−) +

∫
|z|>1

H(z, θt−)ν(θt− , dz)

+
∫
|z|>1

∑
j∈E\{θt−}

[(ez − 1)λθt− ,j(yt−)]b̄(z | θt− , j)dz


. (4.35)

dxt = xt−dM
θ
t , (4.36)

with

dM θ
t = µ(θt−)dt+

∫
|z|≤1

G(z, θt−)ψ̄(θt− , dz, dt)

+
∫
|z|>1

H(z, θt−)ψ̄(θt− , dz, dt)

+
∫

z∈R

∑
j∈E\{θt−}

[(ez − 1)N̄(dt, dz, {(θt− , j)})]
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+
∫
|z|>1

∑
j∈E\{θt−}

[(ez − 1)λθ
t− ,j(yt−)]b̄(z | θt− , j)dzdt

+
∫
|z|>1

H(θt− , z)ν(θt− , dz)dt

= dLθ
t +
∫

z∈R

∑
j∈E\{θt−}

[(ez − 1)N(dt, dz, {(θt− , j)})], (4.37)

where Lθ is defined in (3.2). Furthermore, we note that the solution process deter-
mined by (4.36) has another solution representation of (4.1) in the framework of
Remark 4.2. In fact, the closed form solution representation of (4.36) is as follows:

xt = x0 exp


∫ t

0

∫
z∈R

∑
j∈E\{θs−}

[zN(ds, dz, {(θs− , j)})]

+
∫ t

0

µ(θs−)ds− 1
2

∫ t

0

σ2(θs−)ds

+
∫ t

0

∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ν(θs− , dz)ds

+
∫ t

0

σ(θs−)dBs +
∫ t

0

∫
|z|≤1

ln(1 +G(z, θs−))ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

ln(1 +H(z, θs−))ψ(θs− , dz, ds)

]
. (4.38)

In the following section, we utilize the infinitesimal generator of the exponen-
tial semi-Markov Lévy switching process to find a closed form expression of the
characteristic function of the ln(xt) from (4.1).

5. Characteristic Function

In this section, we derive a closed form expression for the conditional characteristic
function

Ψ(u, t, y, j, x) = E[eiu ln(xt) | y0 = y, θ0 = j, x0 = x] (5.1)

of the log price process

ln(xt) =
n(t)∑
p=1

ln(βp) + Lθ
t , (5.2)

where βn, Lθ in Definition 4.1 and xt is the closed form solution process of (4.1) in
the context of (3.25).

Lemma 5.1. Let Lθ
t , x, y and γ be defined in (3.2), (4.1), (2.14) and (4.7), respec-

tively. A closed form expression for the conditional characteristic vector function of
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ln(x) is

Ψ(u, t, y, x) = exp[iu ln(x)] exp
[∫ t+y

y

M(u, s)ds
]
· 1, (5.3)

where i =
√−1; Ψ(u, t, y, x) is an m-dimensional column vector with kth component

Ψ(u, t, y, k, x), for k ∈ E; 1 is m× 1 vector with components ones, and M(u, y) =
(Mpq(u, y))m×m is an m×m matrix defined by

Mq,p(u, y) =




iuµ(q) − 1
2
σ2(q)u2 +

∫
|z|≤1

[eiuG(z,q) − 1 − iuG(z, q)]ν(q, dz)

+
∫
|z|>1

[eiuH(z,q) − 1]ν(q, dz) + λq,q(y), if p = q

λq,p(y)
∫

z∈R

eiuz b̄(z | q, p)dz, otherwise,

and it is assumed to satisfy the Lie bracket-type condition

[M(u, y1),M(u, y2)] = 0, ∀ y1, y2 ∈ R
+. (5.4)

Proof. From (5.3), first we observe that

Ψ(u, t, y, x) = exp[iuLθ
t ] exp

[∫ t+y

y

M(u, s)ds
]
· 1. (5.5)

We note that Ψ(u, t, y, θt, x) possesses all smoothness properties of V defined in
Theorem 4.1. Therefore, following the argument used in the proof of Theorem 4.1,
Definition 4.3 and Remark 4.5, we conclude that Ψ is in the domain of the infinites-
imal generator of the process (yt, θt, iuL

θ
t )t∈[0,T ]. Moreover, it satisfies the following

system of linear partial differential equation:

∂Ψ(u, t, y, k, x)
∂t

= AΨ(u, t, y, k, x), for k ∈ E, (5.6)

where A is the operator defined in Definition 4.3. From Remark 4.4 with µ(θs−)
replaced by

µ(θs−) +
1
2
σ(θs−) +

∫
|z|≤1

[eG(z,θs−) −G(Z, θs−) − 1]ν(θs− , dz)

and for Ψ defined in (5.1), we have

AΨ(u, s, ys− , θs− , x)

=
∂Ψ(u, s, y, θs− , x)

∂s
+
∂Ψ(u, s, y, θs−, x)

∂y

+ iu

[
µ(θs) +

1
2
σ2(θs)

]
xs−

∂Ψ(u, s, y, θs−, x)
∂x
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+
∫
|z|≤1

[
Ψ(u, s, y, θs− , x+ x[eiuG(z,θs− ) − 1])

−Ψ(u, s, y, θs−, x) − iuxG(z, θs−)
∂Ψ(u, s, y, θs− , x)

∂x

]
ν(θs− , dz)

+
∫
|z|>1

[Ψ(u, s, y, θs− , x+ x[eiuH(z,θs− ) − 1])

−Ψ(u, s, y, θs−, x)]ν(θs− , dz) − 1
2
x2

su
2σ2(θs−)

∂2Ψ(u, s, y, θs− , x)
∂x2

+
∫

z∈R

∑
θs∈E\{θs−}

Ψ(u, s, y, θs, xe
iuz)b̄(z | θs− , θs)λθ

s− ,θs(y)dz

−Ψ(u, s, y, θs−, x)λθ
s− ,θ

s− (y) for θs− ∈ E. (5.7)

Now, we assume that Ψ(u, t, y, k, x) = exp[iu ln(x)]h(u, t, y, k), where h(u, t, y, k)
is the kth component of an unknown m-dimensional vector function h(u, t, y) =
[h(u, t, y, 1), . . . , h(u, t, y,m)]�. From this, (5.6) reduces to the following system of
partial differential equations:

∂h(u, t, y, k)
∂t

=
∂h(u, t, y, k)

∂y
+ h(u, t, y, k)

[
iu

[
µ(k) +

1
2
σ2(k)

]

+
1
2
σ2(k)[−iu− u2] +

∫
|z|≤1

[eiuG(z,k) − 1 − iuG(z, k)]ν(k, dz)

+
∫
|z|>1

[eiuH(z,k) − 1]ν(k, dz) + λk,k(y)

]

+
∫

z∈R

∑
j �=k

λk,j(y)h(u, t, y, j)(y)eiuz b̄(z | k, j)dz

=
∂h(u, t, y, k)

∂y
+ h(u, t, y, k)

[
iuµ(k) − 1

2
σ2(k)u2

+
∫
|z|≤1

[eiuG(z,k) − 1 − iuG(z, k)]ν(k, dz)

+
∫
|z|>1

[eiuH(z,k) − 1]ν(k, dz) + λk,k(y)

]

+
∫

z∈R

∑
j �=k

λk,j(y)h(u, t, y, j)(y)eiuz b̄(z | k, j)dz. (5.8)

As stated in Remark 4.5, the coefficients of h are defined by the elements of A asso-
ciated with Ψ(u, t, y, x), in particular, the m×mmatrixM(u, y) = (Mk,j(u, y))m×m
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defined in (5.4). From the definition of h(u, t, y), (5.8) reduces to

∂h(u, t, y)
∂t

=
∂h(u, t, y)

∂y
+M(u, y)h(u, t, y), h(u, 0, y) = 1 = (1, . . . , 1)�︸ ︷︷ ︸

m ones

.

(5.9)

Using the method of characteristics, the system of partial differential equations (5.9)
can be solved. In this case, the characteristic curves are determined by dy

dt = ±1.
Solving these differential equations, we obtain

η = t− y and ζ = t+ y. (5.10)

We use the above change of variable to define the transforms h̃ and M̃ from h and
M , respectively, as functions of (η, ζ)


h̃(u, η, ζ) = h

(
u,
η + ζ

2
,
−η + ζ

2

)

M̃(u, η, ζ) = M

(
u,

−η + ζ

2

)
.

(5.11)

From (5.11), the initial value problem (5.9) reduces to the ODE

∂h̃(u, η, ζ)
∂η

=
1
2
M̃(u, η, ζ)h̃(u, η, ζ), h̃(u,−y, y) = 1. (5.12)

Under condition (5.4), the general solution of the linear homogeneous ODE with
time varying coefficients is Magnus (1954)

h̃(u, η, ζ) = exp
[
1
2

∫ η

0

M̃(u, κ, ζ)dκ
]
· g(ζ), (5.13)

where g is an arbitrary m-dimensional vector function. Using the initial condition
in (5.12), g is determined by

g(ζ) = exp
[
1
2

∫ 0

−ζ

M̃(u, κ, ζ)dκ
]
1, ∀ ζ ∈ [0, T ].

This together with (5.13), yields the solution of the initial value problem (5.12) as

h̃(u, η, ζ) = exp
[
1
2

∫ η

−ζ

M̃(u, κ, ζ)dκ
]
1.

Using the inverse of the transformation defined in (5.10), the solution of the original
initial value problem (5.9) becomes

h(u, t, y) = exp
[
1
2

∫ t−y

−t−y

M(u,
−κ+ t+ y

2
)dκ
]
1

= exp
[∫ t+y

y

M(u, s)ds
]
1.

This establishes the conditional characteristic function for the log prices described
by (4.1).
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Remark 5.1. We note that the closed form exponential expression (5.3) holds only
under condition (5.4). This is due to the fact that system of ode in (5.12) has time
varying coefficients. Assuming the matrix (Mi,j)m×m has continuous entries with
respect to y, the system of differential equations with time varying coefficients (5.12)
has a fundamental matrix Φ(u, t, y). Therefore, the characteristic function in (5.1)
is described by

Ψ(u, t, y, x) = exp[iu ln(x)][Φ(u, t, y)Φ(u, 0, y)−1]1. (5.14)

The characteristic function Ψ(u, t, y, x) has a closed form expression if Φ has a
closed form expression. Theorem 5.1 corresponds to the particular case where
Ψ(u, t, y, x) = exp[

∫ t+y

y M(u, s)ds].

In the following, we present a consequence of Lemma 5.1 that extends the char-
acteristic function of sojourn time of finite state Markov processes Momeya (2012)
and Elliott & Osakwe (2006).

Corollary 5.1. We denote Ot
s(k) the time spent by the semi-Markov process

(θt)t∈[0,T ] in its state k in the time interval [s, t], ∀ s, t ∈ [0, T ], with s ≤ t, and
Ot

s = [Ot
s(1), Ot

s(2), . . . , Ot
s(m)]� denotes the m-dimensional occupation time vector

of θ. If a = (a1, a2, . . . , am)� is an m× 1 vector of constant real numbers, then

E[eiu〈Jt
s,a〉 | ys = y, θs = k] =

〈[
exp
[∫ t+y

y

M(u, s)ds
]]

· ek,1
〉
,

where

Mp,q(u, y) =

{
iuaq + λq,q(y), if p = q

λp,q(y), otherwise.
(5.15)

Proof. Let (at)t∈[0,T ] denote a stochastic process with at = aj whenever θn(t) = j.

exp[iu〈Ot
s, a〉] = exp

[
iu
∑
k∈E

akO
t
s(k)

]
, for i =

√−1

= exp
[
iu

∫ t

s

av−dv

]
, (as a is piecewise constant)

= exp
[
iu

∫ t

s

av−dv

]

= eiu
R t

s
dLθ

v , with Lθ
v = av, ∀ v ∈ [0, T ].

The characteristic function of the semi-Markov occupation times in the time interval
[s, t] becomes

E[eiu〈Jt
s,a〉 | ys = y, θs = k]

= E[eiu
R t

s
dLθ

v | ys = y, θs = k]

= E[eiuLθ
t−s | y0 = y, θ0 = k],
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since the couple (θ, y) is homogeneous. Applying Lemma 5.1 with βn = 1 ∀n ∈
I(0,∞) proves the result. Corollary 5.1 is a direct extension of the results in Hain-
aut & Colwell (2014), Buffington & Elliott (2002) and Momeya (2012).

6. Change of Measure and Pricing Kernels

In this section, we introduce the conditional minimum equivalent martingale mea-
suring the semi-Markov jump risk and the Lévy risk. In addition, we also develop
an unconditional minimum entropy martingale measure and the Esscher transform
Siu & Yang (2009) measuring all three risks, namely, Lévy risk, semi-Markov jump
risk and regime switching risk. Prior to the development of these concepts and
results, we utilize the closed form solution representation of (3.1) to shed a light on
the martingale property of the solution process of the Lévy type stochastic linear
differential equations. For this purpose, let xt be the solution process of (3.1) and
assume that it is a (Ht ∨ L̄t)-martingale, that is, for s ≤ t, E[xt − xs |Hs ∨ L̄s] = 0.
This is represented by the following illustrations.

Illustration 6.1.

(1) From E[xt −xs |Hs ∨ L̄s] = 0 and (3.25), it is obvious that the solution process
xt of (3.1)

xt = x0 exp

[∫ t

0

µ(θs−)ds+
∫ t

0

σ(θs−)dBs +
∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|>1

H(z, θs−)ψ̄(θs− , dz, ds)

]
(6.1)

is a martingale if and only if

µ(θt−) +
1
2
σ2(θt−) +

∫
|z|≤1

[eG(z,θt−) −G(z, θt−) − 1]ν(θt− , dz)

+
∫
|z|>1

[eH(z,θt− ) − 1]ν(θt− , dz) = 0, ∀ θt− ∈ E. (6.2)

(2) Furthermore if Lθ
t in (3.2) is replaced by Mθ

t

dM θ
t = σ(θt−)dBt +

∫
|z|≤1

G(z, θt−)ψ̄(θt− , dz, dt)

+
∫
|z|>1

H(z, θt−)ψ̄(θt− , dz, dt), (6.3)

then the solution process of (3.1) in (3.18) is indeed a martingale and is repre-
sented by

xt = x0 exp
[
−1

2

∫ t

0

σ2(θs−)ds+
∫ t

0

σ(θs−)dBs

+
∫ t

0

∫
|z|>1

[ln(H(z, θs−) + 1) −H(z, θs−)]ν(θs− , dz)ds
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+
∫ t

0

∫
|z|≤1

ln(1 +G(z, θs−))ψ̄(θs− , dz, ds)

+
∫ t

0

∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ν(θs− , dz)ds

+
∫ t

0

∫
|z|>1

ln(1 +H(z, θs−))ψ̄(θs− , dz, ds)

]
. (6.4)

(3) Replacing H(z, θs), G(z, θs) and Lθ
s in (3.2) by eH(z,θs)−1, eG(z,θs)−1 and Mθ

in (6.3), respectively, the solution of the (IVP) (3.1) in (3.20) is a martingale if
and only if

xt = x0 exp

[∫ t

0

σ(θs−)dBs +
∫ t

0

∫
|z|>1

H(z, θs−)ν(θs− , dz)ds

− 1
2

∫ t

0

σ2(θs−)ds+
∫ t

0

∫
|z|≤1

[G(z, θs−) − eG(z,θs−) + 1]ν(θs− , dz)ds

+
∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds) +
∫ t

0

∫
|z|>1

H(z, θs−)ψ̄(θs− , dz, ds)

]
.

(6.5)

(4) V (t, yt− , θt− , xt−) in (4.13) is a martingale if and only if LV (t, yt− , θt− , xt−) is
identically equal to zero. In particular, from (4.34), the solution process (4.1)
is a local martingale if and only if LV (t, yt− , θt− , xt−) in (4.35) is identi-
cally zero that is µ(θt−) +

∫
|z|>1

H(z, θt−)ν(θt− , dz) +
∫
|z|>1

∑
j∈E\{θt−}[(e

z −
1)λθ

t− ,j(yt−)]b̄(z | θt− , j)dz = 0.

We introduce and recall a few notations necessary for presenting the next lemma.

Remark 6.1. We denote Φt a positive (P, (Ht∨ L̄t)t∈[0,T ])-martingale process with
initial value Φ0 = 1. In fact for x0 = 1, any one of the solution processes in
Illustration 6.1 can be represented by Φt, that is the fundamental solution process
of linear Lévy-type stochastic differential equations. Moreover, Φt is called a density
process of a probability measure P̄ with respect to a given probability measure P .

Based on a Girsanov theorem for Jacod & Shiryaev (1987) and point Brémaud
(1981) processes, we present a Girsanov-type theorem for stochastic hybrid process
described by (4.1). We highlight the effects of change of measures on both time and
state domains of decomposition with respect to (Lθ

t )t∈[0,T ], (βn)n≥0 and (θt)t∈[0,T ].
(Tn)n≥0 are the jump times in Definition 2.1.

Lemma 6.1 (Girsanov-type Theorem). Let η and Y be piecewise deterministic
stochastic processes defined on [0, T ] × R and [0, T ] × R × R into R, respectively.
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ξ = (ξi,j(s, z))m×m is a R
m×m-valued and H̄t-predictable process defined on [0, T ]×

R into R. Let us consider the process Mθ
t defined by

dM θ
t =
∫

z∈R

∑
j∈E\{θt−}

(ez − 1)N(dt, dz, {(θt− , j)}) + dLθ
t , (6.6)

where Lθ
t is defined in (3.2). Furthermore, we make the following assumptions

(H1) ξ = (ξi,j(s, z))m×m, (λi,j(ys))m×m defined in (2.9), η and Y satisfy the fol-
lowing conditions :


∫ t

0

∫
z∈R

ξi,j(z, s)λi,j(ys−)b̄(z | i, j)dzds <∞ Y ≥ 0

∫ t

0

η(s, θs−)µ(θs−)ds <∞
∫

z∈R

[G(z, θs−)1|z|≤1 +H(z, θs−)1|z|>1][Y (θs− , z, s) − 1]ν(θs− , dz) <∞
∫

z∈R

[Y (θs− , z, s) − 1]2ν(θs− , dz) <∞.

(6.7)

(H2) let Zt be the solution process of the following linear SDE,

dZt = Zt−


η(t, θt)σ(θt)dBs +

∫
z∈R

(Y (θt, z, t) − 1)ψ̄(θt, dz, dt)

+
∑

(i,j)∈E2

∫
z∈R

[ξi,j(t, z) − 1]N̄(dt, dz, {(i, j)})

Z0 = 1, (6.8)

where N̄ = N −γ defined in (4.14) and Zt has the closed form representation

Zt = exp
[
−
∫ t

0

1
2
η(s, θs−)2σ(θs−)2ds+

∫ t

0

η(s, θs−)σ(θs−)dBs

+
∫ t

0

∫
z∈R

(Y (θs− , z, s) − 1)ψ̄(θs− , dz, ds)

+
∫ t

0

∫
z∈R

[ln(Y (θs− , z, s)) − (Y (θs− , z, s) − 1)]ψ(θs− , dz, ds)
]

×
∏

(i,j)∈E2

exp
[∫ t

0

(1 − ξi,j(s, z))b̄(z | i, j)λi,j(ys−)dzds

+
∫ t

0

∫
z∈R

ln(ξi,j(s, z))N(ds, dz, {(i, j)})
]
. (6.9)
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Therefore, from Remark 6.1 and under a local equivalent probability measure P̄ with
density process Zt with respect to P, the following hold :

(1) BP̄
t = − ∫ t

0
η(s, θs−)σ(θs− )ds+Bt is a Brownian motion for each θt− ∈ E,

(2) νP̄ (θt− , ) = Y (θt− , t, )ν(θt− , ) P -almost surely,
(3) γP̄ (dz, {(i, j)}) = ξi,j(t, z)b̄(z | i, j)λi,j(yt)dz P -almost surely,
(4) Mθ

t defined in (6.6) can be expressed as follows :

dM θ
t =


µ(θt−) + σ2(θt−)η(t, θt−) +

∫
|z|≤1

G(z, θt−)(Y (θt− , z, t) − 1)ν(θt− , dz)

+
∫
|z|>1

H(z, θt−)Y (θt− , z, t)ν(θt− , dz)

+
∑

j∈E\{θt−}

∫
z∈R

[ez − 1]γP̄ (dz, {θt− , j})

 dt+ σ(θt−)dBP̄

+
∫
|z|≤1

G(z, θt−)ψ̄P̄ (θt− , dz, dt) +
∫
|z|>1

H(z, θt−)ψ̄P̄ (θt− , dz, dt)

+
∑

j∈E\{θt−}

∫
z∈R

[ez − 1][N(dt, dz, {θt− , j}) − γP̄ (dz, {θt− , j})dt]. (6.10)

Proof. From (6.8), we note that E[Zt −Zs | H̄s ∨ Ls] = 0, ∀ s, t ∈ [0, T ] with s ≤ t.
Hence, Zt is a local martingale. From the initial condition Z0 = 1 in (6.8) and
Illustration 6.1, Zt is a density process of P̄ . Moreover, P̄ (A) =

∫
A
Zt(w)dP (w), for

A ∈ H̄t∨Lt. Consequently, P̄ is a local equivalent probability measure with density
Zt relative to P . From the definition of BP̄ in 1, it is obvious that it is a Brownian
motion with mean

∫ t

0 η(s, θs−)σ(θs− )ds and variance t. It remains to show that BP̄

is a local martingale with respect to P̄ . For this purpose, we use (6.8) and apply
Ito formula for the product ZBP̄ Ladde & Ladde (2013) and we have,

d(ZtB
P̄
t ) = ZtdB

P̄ +BP̄
t dZt + dZtdB

P̄
t

= ZtdB +BP̄
t dZt

= Zt[1 + η(t, θt−)σ(θt−)BP̄
t ]dBt

+ZtB
P̄
t


∫

z∈R

(Y (θt, z, t) − 1)ψ̄(θt, dz, dt)

+
∑

(i,j)∈E2

∫
z∈R

[ξi,j(t, z) − 1]N̄(dt, dz, {(i, j)})

.

From this, we conclude that BP̄ is a P̄ -continuous local martingale with quadr-
atic variation t. From Lévy characterization of Brownian motions, BP̄ is a
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P̄ -standard Brownian motion. This establishes 1. We now prove that νP̄ (θt− , dz) =
Y (θt− , t, z)ν(θt− , dz) is the P̄ -intensity measure of ψ(θt− , ., .). Knowing that P̄ and
P are equivalent, following the argument Applebaum (2009), we define the con-
ditional characteristic function for the Poisson process ψ(θt− , ., .) relative to the
probability measure P̄ as follows:

EP̄

[
exp
[
iu

∫ t

0

∫
z∈R

ψ(θs− , dz, ds)
]∣∣∣∣HT

]
= exp

[∫ t

0

∫
z∈R

[(eiu − 1)]νP̄ (θs, dz)
]
,

(6.11)

where νP̄ is an intensity measure of ψ with respect to P̄ . Using the closed form
expression of the density process (6.9), the characteristic function in (6.11) is also
computed as follows:

EP̄

[
exp
[
iu

∫ t

0

∫
z∈R

ψ(θs− , ds, dz)
]∣∣∣∣HT

]

= E

[
Zt exp

[
iu

∫ t

0

∫
z∈R

ψ(θs− , dz, ds)
]∣∣∣∣HT

]

= E

[
exp
[∫ t

0

∫
z∈R

(Y (θs− , z, s) − 1)ψ̄(θs− , dz, ds)

+
∫ t

0

∫
z∈R

[ln(Y (θs− , z, s)) − Y (θs− , z, s) + 1 + iu]ψ(θs− , dz, ds)
]∣∣∣∣HT

]

= exp
[∫ t

0

∫
z∈R

(1 − Y (θs− , z, s))ν(θs− , dz)ds
]

×E

[
exp
[∫ t

0

∫
z∈R

(Y (θs− , z, s) − 1)ψ(θs− , dz, ds)

+
∫

z∈R

[ln(Y (θs− , z, s)) − (Y (θs− , z, s)− 1) + iu]ψ(θs, dz, ds)
]∣∣∣∣∣HT

]

= exp
[
−
∫ t

0

∫
z∈R

(Y (θs− , z, s) − 1)ν(θs− , dz)ds
]

×E

[
exp
[∫ t

0

∫
z∈R

[ln(Y (θs− , z, s)) + iu]ψ(θs− , dz, ds)
]∣∣∣∣HT

]
. (6.12)

We note that
∫ t

0

∫
z∈R

[ln(Y (θs− , z, s))+ iu]ψ(θs− , dz, ds) is a compound Poisson pro-
cess. From Applebaum (2009), (6.12) becomes

EP̄

[
exp
[
iu

∫ t

0

∫
z∈R

ψ(θs− , ds, dz)
]∣∣∣∣HT

]

= exp
[
−
∫ t

0

∫
z∈R

(Y (θs− , z, s) − 1)ν(θs− , dz)ds
]
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= exp
[∫ t

0

∫
z∈R

[eln(Y (θs,z,s))+iu − 1]ν(θs, dz)ds
]

= exp
[∫ t

0

∫
z∈R

[Y (θs− , z, s)eiu − Y (θs− , z, s)]ν(θs− , dz)
]

= exp
[∫ t

0

∫
z∈R

[(eiu − 1)]Y (θs− , z, s)ν(θs− , dz)
]
. (6.13)

From (6.11) and (6.13), it is obvious that the intensity of Lévy jump poisson measure
ψ, with respect to P̄ , is ν̄ = Y ν P — almost surely. Based on the proof of 2, the
proof of 3 can be reformulated, analogously. The verification of (6.10) follows from
algebraic computations.

Remark 6.2. We recall that under the historical probability measure P ,
(pi,j)(i,j)∈E2 in (2.5), F (|i, j) in Lemma 2.1 and b̄(|i, j) in (4.3) are the transition
probability matrix of the embedded Markov chain, the sojourn time distribution and
the log jump density, respectively. We denote (pP̄

i,j)(i,j)∈E2 , F P̄ (|i, j) and b̄P̄ (|i, j)
the transition probability matrix, the conditional cumulative distribution of sojourn
times and the density of the log of jump due to the semi-Markov process from state i
to state j at jump time Tn−1, under the probability measure P̄ . Using these notions
and part 3 of Lemma 6.1, we have

b̄P̄ (z | i, j)λP̄
i,j(ys) = ξi,j(s, z)b̄(z | i, j)λi,j(ys), with

λP̄
i,j(ys) = pP̄

i,j

f P̄ (ys | i, j)
1 −∑k �=i p

P̄
i,jF

P̄ (ys | i, k)
. (6.14)

We further remark that P̄ is a risk neutral measure, if the process Lθ
t − ∫ t

0
r(s)ds

is a local martingale with respect to P̄ , whenever the drift coefficient satisfies the
condition:

µ(θt−) − r(t) + σ2(θt−)η(t, θt−) +
∫
|z|≤1

G(z, θt−)(Y (θt− , z, t)− 1)ν(θt− , dz)

+
∫
|z|>1

H(z, θt−)Y (θt− , z, t)ν(θt− , dz)

+
∑

j∈E\{θt−}

∫
z∈R

[ez − 1]γP̄ (dz, {(θt− , j)}) = 0. (6.15)

Given the 2-variate process (η(t, θt), Y (θt, z, t)) in (6.8), one can freely choose ξ.
Hence, for each choice of ξ, one gets a distinct risk neutral measure. Furthermore,
by the application of the first and the second fundamental theorem of asset pric-
ing Back & Pliska (1991), the market under consideration is arbitrage free and
incomplete.
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Following arguments in Elliott et al. (2005), Momeya (2012) and Miyahara
(1999), we define two particular equivalent martingale measures, namely the condi-
tional and the unconditional minimum entropy martingale measure, respectively.

6.1. Conditional minimum entropy martingale measure

We define the conditional minimum entropy martingale measure (CMEMM) pricing
Lévy and semi-Markov jump risks. In the absence of risk associated with regime
changes, a pricing kernel is computed through a random Esscher transform. Without
loss in generality, we assume that investors always know past and future market
regimes. Based on the idea in Miyahara et al. (2001), we define the process Rθ as
follows:

Rθ
t =
∫ t

0

∫
z∈R

∑
j∈E\{θs−}

[(ez − 1)N(ds, dz, {(θs− , j)})] + Lθ
t , (6.16)

where Lθ
t , n(t) and βk are defined in (3.2), (2.3) and (4.1), respectively. Picking a

locally bounded process (αt)t∈[0,T ], we modify the process defined in (6.16) as∫ t

0

αsdR
θ
s =
∫ t

0

∫
z∈R

∑
j∈E\{θs−}

αs− [(ez − 1)N(ds, dz, {(θs− , j)})]

+
∫ t

0

αs−dLθ
s. (6.17)

In the following, we utilize the modified process (6.17) to formulate a dynamic
process for the asset process.

Definition 6.1. Let α be a locally bounded process. We assume that
E[e

R
t
0 αs−dRθ

s |HT ] < ∞, ∀ t ∈ [0, T ]. We define the stochastic processes Zα and
k(s, z, ds, dz) as follows:

Zα
t =

e
R t
0 αs−dRθ

s

E[e
R t
0 αs−dRθ

s |HT ]
, ∀ t ≥ 0 (6.18)

and

k(s, z, ds, dz) =
∑

j∈E\{θs−}
αs−(ez − 1)N(ds, dz, {(θs− , j)}), ∀ s ≥ 0, z ∈ R.

(6.19)

The stochastic process defined in (6.18) is called an Esscher transformation with
Esscher parameters (αs)s∈[0,T ].

We first establish preliminary results useful for finding a necessary and sufficient
condition under which the probability measure Pα with density relative to P defined
by the Esscher transform in (6.18) is an equivalent martingale measure relative to
the asset price process xt described by (4.1).
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Lemma 6.2. Under Definition 4.1, Remark 4.1 and the Esscher parameter
(αs)s∈[0,T ] in Definition 6.1, a stochastic process xα

t exists and satisfies the following
properties.

(1)
E[xα

t |HT ]

=
n(t)∏
i=0

E

[
exp

[
αi

∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)

]∣∣∣∣∣ θi, θi+1

]
e

R Ti+1
Ti

fi(s)ds
,

(6.20)

where

fi(s) = α(i)µ(θi) +
1
2
σ2(θi)α(i)

+
∫
|z|≤1

[eα(i)G(z,θi) − 1 − α(i)G(z, θi)]ν(θi, dz)

+
∫
|z|>1

[eα(i)H(z,θi) − 1]ν(θi, dz), (6.21)

for i ∈ I(0,∞), s ∈ [0, T ].
(2)

xα
t

E[xα
t |HT ]

=
n(t)∏
i=0

exp[αi

∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)]e
R Ti+1

Ti
αs−dM

θi
s

E[exp[αi

∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θi, θi+1]
, (6.22)

where αs−dM θi
s = αs−dLθi

s − fi(s)ds.
(3) E[ xα

t

E(xα
t | HT ) |HT ] = 1,

(4) Zα
t = xα

t

E[xα |HT ] is a (P,HT ∨ L̄)-local martingale.
(5) If Pα is a risk neutral measure with respect to Zα

t , then under Pα we have:

(a) BP α

t = Bt −
∫ t

0
αs−σ(θs−)ds, is a Pα-standard Brownian motion process.

(b) νP α

(θs− , dz) = e[H(z,θs− )1(|z|>1)+G(z,θs−)1|z|≤1]ν(θs− , dz), is a Pα-predict-
able compensator of the Poisson random measure ψ(j, ) for all j ∈ E.

(c) The density of the nth jump coefficient βn is

exp[
∫ Tn+1

Tn

∫
z∈R

k(s, z, ds, dz)]

E[exp[
∫ Tn+1

Tn

∫
z∈R

k(s, z, ds, dz)] | θn, θn+1]
.

Proof. From Definition 4.1, 0 = T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn−1 are the regime switch-
ing times caused by the semi-Markov process prior to t. For notational convenience,
we denote θ−1 = θ0. Under the assumption of the lemma, the solution process of
(4.1) in the context of (4.2) and the simple return process (6.17) exist and it is
represented as

xα
t =

n(t)∏
i=0

exp

[∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)

]
e

R Ti+1
Ti

αs−dL
θi
s ,
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with β0 = x0 = 1. For t ∈ [Tn, Tn+1], from the independence of Lévy and semi-
Markov processes, we have

E[xα
t |HT ] =

n−1∏
i=0

[
E

[
exp

[∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)

]∣∣∣∣∣ θi−1, θi

]

×E[e
R Ti+1

Ti
αs−dLi

se
R t

Ti
αs−dL

θi
s |HT ]

]
. (6.23)

This, together with an application of the Lévy Kintchine formula Øksendal & Sulem
(2005) yields

E[xα
t |HT ] =

n(t)∏
i=0

E

[
exp

[∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)

]∣∣∣∣∣ θi−1, θi

]

×
[
exp
∫ Ti+1

Ti

[
αs−µ(θi) +

1
2
σ2(θi)α2

s−

+
∫
|z|≤1

[eαs−G(z,θi) − 1 − αs−G(z, θi)]ν(θi, dz)

+
∫
|z|>1

[eαs−H(z,θi) − 1]ν(θi, dz)

]
ds

]
.

This completes the proof of (1). For the proof of (2), we consider

xα
t

E[xα |HT ]
. (6.24)

From (6.21) and (6.24), we obtain

xα
t

E[xα |HT ]

=

∏n(t)
i=0 exp[

∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] exp[
∫ Ti+1

Ti
αs−dLθi

s ]∏n(t)
i=0 E[exp[

∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θj, θj+1] exp[
∫ Tj+1

Tj
fj(s)ds]

=
n(t)∏
i=0

exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] exp[
∫ Ti+1

Ti
[αs−dL

θj
s − fi(s)ds]]

E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θj−1, θj ]
.

(6.25)

From (6.3), (6.17), (6.21) and (6.25), we observe that αs−dL
θj
s − fj(s)ds has a form

similar to (6.3), that is

αs−dLθj
s − fj(s)ds = αs−dM

θj

t , (6.26)
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with coefficients G and H replaced by eG − 1 and eH − 1, respectively, hence estab-
lishing (2). Using (1), (6.25) and (6.26), we further remark that

E

[
xα

t

E[xα
t |HT ]

∣∣∣∣∣HT

]

= E


n(t)∏

i=0

exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] exp[
∫ Ti+1

Ti
αs−dM θi

s ]

E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θi, θi+1]

∣∣∣∣HT




=
n(t)∏
i=0

E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θi−1, θi]

E[E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θi, θi+1] | θi−1, θi]

×E

[
exp

[∫ Ti+1

Ti

[αs−dLθi
s − fi(s)ds]

]∣∣∣∣∣HT

]

=
n(t)∏
i=0

1 = 1, for t ∈ [0, T ],

which establishes (3). For the proof of (4) we consider

xα
t

E[xα
s |HT ]

xα
s

E[xα
s |HT ]

=
n(t)∏

i=n(s)+1

exp[αi

∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)]

E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θi−1, θi]

× exp

[∫ Ti+1

Ti

[αs−dM θi
s ]

]
.

The conditional expectation with respect to HT ∨ L̄s yields

E

[
xα

t

E[xα
t |HT ]

∣∣∣∣∣HT ∨ L̄s

]
=

xα
s

E[xα
s |HT ]

.

This proves (4). Moreover, from (1), (4) and (6.22), Zα is a probability density
process of a probability measure Pα with respect to P . The proof of statements in
(5(a)) and (5(b)) of (5) follow by imitating the proofs of (1) and (2) of Lemma 6.1.
We only establish (5(c)). For B ⊂ Bk and t ∈ [Tk, Tk+1). In fact

EP α

[1B] = E[1BZ
P α

t ]

= E[E[1BZ
P α

t |HT ]],

= E


E

1B

n(t)∏
i=0

exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)]

E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θi−1, θi]

∣∣∣∣∣∣HT





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= E

[
1B

exp[
∫ Tk+1

Tk

∫
z∈R

k(s, z, ds, dz)]

E[exp[
∫ Tk+1

Tk

∫
z∈R

k(s, z, ds, dz)]|θk−1, θk]

]

×
n(t)∏

i=1,i�=k

E

[
exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)]

E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)]|θi−1, θi]

∣∣∣∣∣ θi−1, θi

]

= E

[
1B

exp[
∫ Tk+1

Tk

∫
z∈R

k(s, z, ds, dz)]

E[exp[
∫ Tk+1

Tk

∫
z∈R

k(s, z, ds, dz)] | θk−1, θk]

]
.

Hence, ∀B ∈ Bk, EP α

[1B] = E[1B
exp[

R Ti+1
Ti

R
z∈R

k(s,z,ds,dz)]

E[exp[
R Ti+1

Ti

R
z∈R

k(s,z,ds,dz)] | θk−1,θk]
]. From Radon

Nikodym theorem Jacod & Shiryaev (1987), the density of βk under Pα is
exp[

R Tk+1
Tk

R
z∈R

k(s,z,ds,dz)]

E[exp[
R Tk+1

Tk

R
z∈R

k(s,z,ds,dz)] | θk−1,θk]
. This completes the proof of the lemma.

In the following lemma, we provide a sufficient condition for the price process to
be a (Pα, (HT ∨ L̄t)t∈[0,T ])-martingale. The result obtained will be used to derived
the martingale condition on the discounted price process.

Lemma 6.3. In addition to assumptions of Lemma 6.2, we assume that∫
|z|>1(H(z, θs) + 1)eα(j)H(z,θs)ν(j, dz) < ∞, ∀ j ∈ E. Then the following results

hold :

(1) x in (4.1) is a (Pα, (HT ∨ L̄t)t∈[0,T ])-martingale measure provided that


µ(θn) + αtσ
2(θn) +

∫
|z|≤1

G(z, θn)[eαtG(z,θn) − 1]ν(θn, dz)

+
∫
|z|>1

H(z, θn)eαtH(z,θn)ν(θn, dz) = 0,

EP α [βn | θn−1, θn] = 1, ∀ t ∈ (Tn, Tn+1), ∀n ∈ I(0,∞).

(6.27)

(2) The discounted price process x̃t = e
R

t
0 rsdsxt, is a (Pα, (HT ∨ L̄t)t∈[0,T ])-

martingale if :


µ(θn) + αtσ
2(θn) +

∫
|z|≤1

[G(z, θn)eαtG(z,θn) −G(z, θn)]ν(θn, dz)

+
∫
|z|>1

[eαtH(z,θn) − 1]ν(θn, dz) = rt,

EP α [βn | θn−1, θn] = 1, ∀ t ∈ (Tn, Tn+1), ∀n ∈ I(0,∞).

(3) Let α� and Pα�

be a solution process of equation (6.27) and the probability
measure associated with the density process Zα�

, respectively. Under Pα�

, the
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process Rθ
t in (6.16) could be expressed as follows:

dRθ
t =
∫

z∈R

∑
j∈E\{θt−}

αt−(ez − 1)N(dt, dz, {(θt− , j)}) + rt−dt+ σ(θt−)dBP α�

+
∫
|z|≤1

G(z, θt−)[ψ(θt− , dt, dz) − νP α�

(θt− , dz)dt]

+
∫
|z|>1

H(z, θt−)[ψ(θt− , dt, dz) − νP α�

(θt− , dz)dt],

with

EP α� [βn | θn−1, θn] = 1.

Proof. From Radon Nikodym theorem, xt is a
(
Pα, (HT ∨ L̄t)t∈[0,T ]

)
-martingale if

and only if xtZ
α
t is a

(
P, (HT ∨ L̄t)t∈[0,T ]

)
-martingale. From (3.18) and (4.1)

xtZ
α
t = xsZ

α
s

n(t)∏
i=n(s)+1


βi exp[

∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)]e
R Ti+1

Ti
[αs−dM

θi
s +dL̄

θi
s ]

E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θi−1, θi | θi−1, θi]



(6.28)

with L̄θ
t defined as follows:

dL̄θ
s =

[
µ(θs−) − 1

2
σ2(θs−) +

∫
|z|≤1

[ln(1 +G(z, θs−)) −G(z, θs−)]ν(θs− , dz)

]
ds

+ σ(θs−)Bs +
∫
|z|≤1

ln(1 +G(z, θs−))ψ̄(θs− , dz, ds)

+
∫
|z|>1

ln(1 +H(z, θs−))ψ(θs− , dz, ds). (6.29)

From (6.3), (6.28) and (6.29), we have

αs−dM θi
s + dL̄θ

s

=

[
µ(θs−) − 1

2
α2

s−σ2(θs−) − 1
2
σ2(θs−)ds−

∫
|z|>1

[eαs−H(z,θs− ) − 1]ν(θs− , dz)

+
∫
|z|≤1

[αs−G(z, θs−) − eαs−G(z,θs−) + 1

+ln(G(z, θs−) + 1) −G(z, θs−)]ν(θs− , dz)ds

]
+ (αs− + 1)σ(θs−)dBs

+
∫
|z|≤1

[αs−G(z, θs−) + ln(G(z, θs−) + 1)]ψ̄(θs− , dz, ds)

+
∫
|z|>1

[αs−H(z, θs−) + ln(H(z, θs−) + 1)]ψ(θs− , dz, ds). (6.30)
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From (3.18), d[e
R

t
0 d(αs−Mθ

s +L̄θ
s)] = e

R
t
0 d(αs−Mθ

s +L̄θ
s)dL�

t with

dL�
s =

[
µ(θs−) + αs−σ2(θs−)

+
∫
|z|≤1

[G(z, θs−)eαs−G(z,θs−) −G(z, θs−)]ν(θs− , dz)ds

−
∫
|z|>1

H(z, θs−)eαs−H(z,θs− )ν(θs− , dz)

]
ds+ σ(θs−)(αs− + 1)dBs

+
∫
|z|≤1

[(G(z, θs−) + 1)eαs−G(z,θs−) − 1]ψ̄(θs− , dz, ds)

+
∫
|z|>1

[(H(z, θs−) + 1)eαs−H(z,θs− ) − 1]ψ̄(θs− , dz, ds). (6.31)

We now derive conditions under which xtZ
α
t , is a (P, (HT ∨ L̄t)t∈[0,T ])-martingale

process. xtZ
α
t is a (P, (HT ∨ L̄t)t∈[0,T ])-martingale process if and only if

E[xtZ
α
t |HT ∨ L̄s] = xsZ

α
s , ∀ s, t ∈ [0, T ]. (6.32)

Applying Lemma 4.1 to V (s, ys, θs, Zsxs) = xtZt and replacing G, H , σ, µ and βi

by

(G(z, θs) + 1)eαsG(z,θs) − 1,

(H(z, θs) + 1)eαsH(z,θs) − 1,

(αs + 1)σs,

µ(θs) + αsσ
2(θs) +

∫
|z|≤1

[G(z, θs)eαsG(z,θs) −G(z, θs)]ν(θs, dz)

−
∫
|z|>1

[eαsH(θs) − 1]ν(θs, dz) and

βi exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)]

E[exp[
∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)] | θi−1, θi]
,

respectively, we obtain

xtZ
α
t − xsZ

α
s =
∫ t

s

xu−Zα
u−

[
µ(θu−) + αu−σ2(θu−)

+
∫
|z|≤1

[G(z, θu−)eαu−G(z,θu− ) −G(z, θu−)]ν(θu− , dz)

−
∫
|z|>1

[eαu−H(z,θu− ) − 1]ν(θu− , dz)
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+
∫
|z|>1

xu−Zα
u− [(H(u, θu−) + 1)eαu−H(z,θu− ) − 1]ν(θu− , dz)

]
du

+
∫ t

s

∫
z∈R

∑
j∈E\{θu−}

xu−Zα
u−(ez − 1)N(du, dz, {θu− , j})

+ sum of martingale terms︸ ︷︷ ︸ .
Taking the conditional expectation, we obtain

E[xtZ
α
t − xsZ

α
s |HT ∨ L̄s]

=
∫ t

s

E[xu−Zα
u− |HT ∨ L̄s]

[
µ(θu−) + αu−σ2(θu−)

+
∫
|z|≤1

[G(z, θu−)eαu−G(z,θu− ) −G(z, θu−)]ν(θu− , dz)

−
∫
|z|>1

H(z, θu−)eαu−H(z,θu− )ν(θu− , dz)

]
du

+E


∫ t

s

∫
z∈R

∑
j∈E\{θu−}

αu−xu−Zα
u−(ez − 1)N(du, dz, {(θu− , j)})

∣∣∣∣∣HT ∨ Ls




= 0, ∀ s, t ∈ [0, T ], (6.33)

for any s, t and for small ∆s s, t = s+ ∆s ∈ (Tn, Tn+1) for some n ∈ I(1,∞). This
together with (6.33) yields

µ(θs) + αsσ
2(θs) +

∫
|z|≤1

[G(z, θs)eαsG(z,θs) −G(z, θs)]ν(θs, dz)

+
∫
|z|>1

H(s, θs)eαsH(z,θs)ν(θs, dz)∆s = 0, ∀ s ∈ (Tn, Tn+1), n ∈ I(1,∞).

(6.34)

Lastly, we assume [s, t] = [Tn, Tn+1]. When ∆s is small. There is one regime change
[s, t] at t = Tn. Using (6.34) and (6.33) becomes

E


∫ Tn+1

Tn

∫
z∈R

∑
j∈E\{θu−}

αu− [xu−Zα
u− ] |HT ∨ LTn


 = 0, ∀n ∈ I(0,∞)

ZTnxnE

[
βne

αn(βn−1)

E[eαn(βn−1) | θn−1, θn]
|θn−1, θn|HT ∨ L̄Tn

]
− 1 = 0, ∀n ∈ I(0,∞)
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E

[
βne

αn(βn−1)

E[eαn(βn−1) | θn−1, θn]

∣∣∣∣∣θn−1, θn

]
− 1 = 0, ∀n ∈ I(0,∞),

E

[
βn exp[

∫ Tn+1

Tn

∫
z∈R

k(s, z, ds, dz)]

E[exp[
∫ Tn+1

Tn

∫
z∈R

k(s, z, ds, dz) | θn−1, θn]]

∣∣∣∣∣ θn−1, θn

]
− 1 = 0, ∀n ∈ I(0,∞),

EP α [βn | θn−1, θn] − 1 = 0, ∀n ∈ I(0,∞).

(6.35)

This completes the proof of (1). (2) is a direct consequence of (1) whenever µ(θs−)
is replaced by µ(θs−) − rs. For the proof of (3), we use (6.27) to derive the risk
neutral dynamic of the process Rθ defined in (6.16). We denote BP α�

and νP α�

the
standard Brownian motion and the intensity process of the Poisson process ψ under
the probability measure Pα�

, respectively. From Lemma 6.2 (5(a)), solving for B
in BP α�

t = Bt −
∫ t

0 α
�
s−σ(θs−)ds, adding and subtracting νP α�

inside the Poisson
integrals, we obtain:

dRθ
t =
∫

z∈R

∑
j∈E\{θt−}

(ez − 1)N(ds, dz, {(θt− , j)}) + µ(θt−)dt+ σ(θt−)dBt

+
∫
|z|≤1

G(z, θt−)ψ̄(θt− , dz, dt) +
∫
|z|>1

H(z, θt−)ψ(θt− , dz, dt)

=
∫

z∈R

∑
j∈E\{θt−}

(ez − 1)N(dt, dz, {(θt− , j)}) +

[
µ(θt−) + σ2(θt−)α�

t−

+
∫
|z|≤1

G(z, θt−)[νP α�

(θt− , dz) − ν(θt− , dz)]

+
∫
|z|>1

H(z, θt−)νP α�

(θt− , dz)

]
dt+ σ(θt−)dBP α�

+
∫
|z|≤1

G(z, θt−)[ψ(θt− , dt, dz) − νP α�

(θt− , dz)dt]

+
∫
|z|>1

H(z, θt)[ψ(θt, dt, dz) − νP α�

(θt, dz)dt], ∀ t ∈ [Tn, Tn+1]. (6.36)

From Lemma 6.2 (5(a)), one gets νP α

(j, dz) = e[H(z,j)1(|z|>1)+G(z,j)1|z|≤1]ν(j, dz).
Hence,

dRθ
t =
∫

z∈R

∑
j∈E\{θt−}

(ez − 1)N(dt, dz, {(θt− , j)}) +

[
µ(θt−)dt+ σ2(θt−)α�

t−

+
∫
|z|≤1

G(z, θt−)[e
α�

θ
t−

G(z,θt− ) − 1]ν(θt− , dz)dt+ σ(θt−)dBP α�
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+
∫
|z|>1

H(z, θt−)e
α�

θ
t−

H(z,θt− )
ν(θt− , dz)dt

]

+
∫
|z|≤1

G(z, θt−)[ψ(θt− , dt, dz) − να�

(θt− , dz)dt]

+
∫
|z|>1

H(z, θt)[ψ(θt, dt, dz) − νP α�

(θt, dz)dt], (6.37)

where α� satisfies the condition (1). Therefore, (6.37) becomes

dRα
t =
∫

z∈R

∑
j∈E\{θt−}

(ez − 1)N(ds, dz, {(θt− , j)}) + σ(θt−)dBP α�

+
∫
|z|≤1

G(z, θt−)[ψ(θt− , dt, dz) − νP α�

(θt− , dz)dt]

+
∫
|z|>1

H(z, θt−)[ψ(θt− , dt, dz) − νP α�

(θt− , dz)dt], ∀ t ∈ [Tn, Tn+1],

(6.38)

with

EP α [βn | θn−1, θn] = 1,

which proves (3). This establishes the lemma.

In the next remark, we introduce a particular case of Rθ
t corresponding to the

simple return process Miyahara et al. (2001) and we present a few properties of
conditional entropies Fujiwara (2003).

Remark 6.3. Let P1 and P2 be two absolutely continuous probability measures
relative to P . We recall three important properties of conditional entropies Miyahara
(1999)

(1) HHT

HT ∨Lt
(P1 |P ) ≥ 0.

(2) HHT

G
(P1 |P ) ≤ HHT

K
(P1 |P ), if K ⊂ HT ∨ LT .

(3) If P1 is a
(
P, (HT ∨ L̄t)t∈[0,T ]

)
-absolutely continuous martingale measure, and

P2 is a probability measure equivalent to P such that ln(dP2
dP ) is integrable with

respect to P1, then HHT

HT ∨LT
(P1 |P ) ≥ EP1 [ln(dP2 | dP ) |HT ].

We now state and prove the conditional minimum entropy property of the mar-
tingale measure Pα�

when Rθ
t is the simple return process of xt in Remark 6.3.

Lemma 6.4. Let Q ∈ M(x̃, P ) = {Q � P : x̃ is a (Q, (HT ∨ L̄t)t∈(0,T ))-
Local martingale}. Let Pα�

be defined as in Definition 6.1 with α� solution pro-
cess of (6.28). Then the following inequality holds :

HHT

HT ∨L̄T
(Q |P ) ≥ HHT

HT ∨L̄T
(Pα� |P ), ∀Q ∈ M(x̃, P ),

where HHT

L̄T ∨HT
is the conditional entropy defined in Elliott et al. (2005).
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Proof. We prove the lemma in two steps. The first step consists in minimizing the
conditional relative entropy of any probability measure Q in the set M(x̃, P ). From
(6.18) and Remark 6.3, one notes that Zα

t can also be expressed as follows:

Zα
t =

e
R

t
0 αs−dR̃θ

s

E[e
R

t
0 αs−dR̃θ

s |HT ]
, ∀ t ≥ 0. (6.39)

By definition of an absolutely continuous local martingale measure, the discounted
stock price x̃ = e−

R t
0 rs−dsxt is a (Q,HT ∨ L̄t)t∈[0,T ]-local martingale process. The

simple return processes Rt and R̃t are associated with the price process xt and
the discounted price process x̃t with respect to (4.1), defined by dRθ

t = dxt

xt−
and

dR̃θ
t = dx̃t

x̃t−
, respectively. Q ∈ M(x̃, P ) implies that x̃ is a (P,HT ∨ L̄t)-martingale.

Hence, R̃θ
t is a Q-local martingale process. Furthermore,

∫ t

0
αs−dR̃θ

s is a local Q-
martingale. As a Q-local martingale,

∫ t

0
α�

s−dR̃θ is therefore integrable with respect
to Q. From (6.39) and (6.21), we have

ln(Zα�

t ) =
∫ t

0

α�
s−dR̃θ

s −
∫ t

0

g(s)ds, (6.40)

where

g(t) = ln(E[e
R t
0 α�

s−dR̃s |HT ]). (6.41)

From (6.40), ln(Zα�

t ) is integrable with respect to Q as a sum of two integrable terms.
Let (tn)n∈I(0,∞) be a local sequence of increasing stopping times with limn→∞ tn =
T , associated with the local martingale

∫ t

0
αs−dR̃θ

s. By definition of local sequences,
the process

∫ tn∧t

0
αs=dR̃θ

s is a Q-martingale. Hence, for any t ∈ [0, T ], we have

HHT

HT ∨L̄T
(Q |P ) ≥ HHT

HT ∨L̄t∧tn
(Q |P ), (Remark 6.3)

≥ EQ

[
ln

(
dPα�

dP

∣∣∣∣
HT ∨L̄t∧tn

)∣∣∣∣∣HT

]
, (Remark 6.3). (6.42)

From (6.40), we have

EQ

[
ln

(
dPα�

dP

∣∣∣∣
HT ∨L̄t∧tn

)∣∣∣∣∣HT

]

= EQ[ln(Zα�

t∧tn
) |HT ]

= EQ

[∫ t∧tn

0

αs−dR̃s |HT

]
+ EQ[g(t ∧ tn) |HT ]

= EQ

(∫ t∧tn

0

αsdR̃s |HT ∨ L̄0

)
+ EQ[g(t ∧ tn) |HT ]

= EQ[g(t ∧ tn) |HT ],
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since
∫ t∧tn

0
αs−dR̃(s) is a (HT ∨ L̄t)t∈[0,T ]-martingale. We note that, |EQ[g(t ∧

tn) |HT ]| ≤ EQ[|g(T )| |HT ] = g(T ), ∀ t ∈ [0, T ], since from (6.41), g is HT -
measurable. Hence, by the Dominated Convergence theorem, we have

lim
n→∞EQ[g(t ∧ tn) |HT ] = EQ[g(T ) |HT ] = |g(T )|. (6.43)

Taking the limit in (6.42), we obtain

HHT

HT ∨L̄T
(Q |P ) ≥ EQ[g(T ) |HT ] = g(T ). (6.44)

The second step of the proof consists in showing that the conditional relative entropy
of the random Esscher transform achieves the minimum value in (6.44). Using (6.39)
and the Pα�

-martingale property of R̃t the relative entropy of Pα�

is computed as
follows:

HHT

HT ∨L̄T
(Pα� |P ) = EP α�

[
ln
(
dPα�

dP

)∣∣∣∣HT

]

= EP α�

[∫ T

0

αs−dR̃s |HT ∨ L̄0

]

+EP α� [g(T ) |HT ], (from (6.39))

= EP α� [g(T ) |HT ] = g(T ), (R̃θ
t is a Pα�

martingale).

From (6.44), the lemma follows.

6.2. Unconditional minimum entropy martingale measure

We will define an equivalent martingale probability measure and we will estab-
lish that it has the unconditional minimum entropy martingale measure property.
(λi,j(t))m×m is the intensity matrix of the semi-Markov process θ from (2.9) and
N is the point process defined in Definition 4.4.

Definition 6.2. Let Q be a local absolutely continuous probability measure with
respect to the historical probability measure P on the filtered measurable space
(Ω,HT ∨L̄T , (Ht∨L̄t)t∈[0,T ]); Q̂ and P̂ , denote the regular versions of the conditional
probabilites P (|HT ) and Q(|HT ) over HT ∨ L̄T . ZQ

t denotes a local martingale
process with initial value 1, representing the density process of Q with respect to
P . (ξi,j(t))m×m denotes a matrix entries with predictable processes. Moreover, the
rows add up to 0 and satisfy

∑
(i,j)∈E2

∫ t

0
|ξi,j(s)λi,j(s)|ds < ∞. N and γ are the

processes defined in Definition 4.4.

We first recall a decomposition theorem Momeya (2012) and we establish a
Girsanov-type lemma necessary in the proof of the UMEMM property.

Lemma 6.5. Let Q, P, ZQ
t , Q̂(w, .), (ξi,j)m×m, N, N̄ and P̂ (w, .) be proce-

sses and probability measures defined in Definitions 6.2 and 4.4. The following
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claims hold:

(1) There exist two density processes ZL
t and ZH

T such that

ZQ
t = ZL

t × ZH
T (6.45)

with

dQ̂

dP̂

∣∣∣∣∣
L̄t∨HT

= ZL
t and

dQ

dP

∣∣∣∣
HT

= ZH
T .

(2) If (λi,j(t))m×m is the matrix with conditional intensity of the semi-Markov
process θ in (2.9) and λi,j(t) 
= 0, ∀ t ∈ [0, T ], then the following claims are
equivalent:

(a)

dQ

dP

∣∣∣∣
Ht

= ZH
t , where ZH solves the SDE:

dZH
t = ZH

t−
∑

(i,j)∈E2

[
−1 +

ξi,j(t−)
λi,j(t−)

]
N̄(dt,R, {(i, j)}), ZH

0 = 1.

(b) Under probability measure Q, with density process ZH
t , the point process M

has conditional intensities matrix (ξi,j(t))m×m.

Proof. The proof of (1) follows closely Momeya (2012). As for (2), we note that
(2(a)) ⇒ (2(b)) follows from the proof of Lemma 6.1. We now aim at proving
that (2(b)) ⇒ (2(a)). From Definition 6.2 and (2(b)), ZH

t and N(,R, {(i, j)}) −
γ(R, {(i, j)}) are (P, (Ht)t∈[0,T ])-martingale processes. From the martingale rep-
resentation property of N̄(t,R, {(i, j)}) = N(t,R, {(i, j)}) − γ(R, {(i, j)}) =
N(t,R, {(i, j)})− λi,j(t), there exists an m×m matrix of Ht-predictable processes
(si,j

t )m×m such that

dZH
t =

∑
(i,j)∈E2

si,j
t−N̄(dt,R, {(i, j)}).

As ZH
t > 0 P -almost surely, there exists an m×m matrix of predictable processes

s̃i,j
t satisfying si,j

t = ZH
t s̃

i,j
t . Hence,

dZH
t = ZH

t−
∑

(i,j)∈E2

s̃i,j
t−N̄(dt,R, {(i, j)}).

From Lemma 6.1, the matrix of conditional Q-intensities of N(,R, {(i, j)}) is
λi,j(t)(1+ s̃i,j

t ). One needs to prove that the conditional intensity of N(,R, {(i, j)})
with respect to Q is ξi,j(t), ∀ i, j ∈ I(1,m). Hence, equating both matrices and
solving for s̃i,j yields

λi,j(t)(1 + s̃i,j
t ) = ξi,j(t), ∀ t ∈ [0, T ], (i, j) ∈ E2, and hence,

s̃i,j
t =

[
−1 +

ξi,j(t)
λi,j(t)

]
, ∀ t ∈ [0, T ], (i, j) ∈ E2.
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Therefore, ZH is solution process of the SDE

dZH
t = ZH

t−
∑

(i,j)∈E2

[
−1 +

ξi,j(t−)
λi,j(t−)

]
[N(dt,R, {(i, j)}) − ξi,j(t−)dt] Z0 = 1.

From Lemma 6.1, the intensity matrix of the semi-Markov process θ under the
probability measure Q is (ξi,j(t))m×m. This completes the proof of (2) and hence
the lemma.

We define a density process which we prove is the unconditional minimum
entropy martingale measure.

Definition 6.3. Let Pα�,ξ be a risk neutral measure with density Zt = Zα�

t ×Zξ
T ,

where Zα�

is introduced in Definition 6.1, with Rθ the simple return process of
defined in (6.16). α� is the solution process of (6.28) and Zξ

t is solution of the SDE
dZξ

t = Zξ
t−
∑

(i,j)∈E2 s̃
i,j
t dM̄ i,j

t .

dP (α�,ξ)

dP

∣∣∣∣
HT ∨L̄T

=
e

R
T
0 α�

s−dRs

E(e
R

T
0 α�

s−dRs |HT )

∏
(i,j)∈E2

exp

[∫ T

0

(1 − ξi,j(s−))λi,j(s−)ds

+
∫ T

0

ln(ξi,j(s−))N(ds,R, {(i, j)})
]
.

We also define a functional F as follows:

F ((ξi,j)) = E


g(T ) +

∑
(i,j)∈E2

[∫ T

0

(1 − ξi,j(s−))λi,j(s−)ds

+
∫ T

0

ln(ξi,j(s−))N(ds,R, {(i, j)})
]

∏
(i,j)∈E2

exp

[∫ T

0

(1 − ξi,j(s−))λi,j(s−)ds

+
∫ T

0

ln(ξi,j(s−))N(ds,R, {(i, j)})
],

where g is defined in (6.41).

We will next show that under a particular choice of ξ, Pα�,ξ has the uncondi-
tional minimum entropy martingale measure property.

Lemma 6.6. We denote Pα�,ξ̄ and F the risk neutral measure and the functional
from Definition 6.3, respectively. If Q is a (Ht ∨ L̄t)t∈[0,T ] risk neutral measure and
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(ξ̄i,j
t )m×m minimizes the functional F, then the following holds :

HHT ∨L̄T
(Q |P ) ≥ HHT ∨L̄T

(P (α�,ξ̄) |P ).

Proof. Let Q be a risk neutral measure. By definition of risk neutral measures, Q
is locally absolutely continuous with respect to P . From Lemma 6.5, there exists a
process ZL

t and a process ZH
t such that dQ

dP

∣∣
HT ∨L̄t

= ZL
t × ZH

T . From Lemma 6.5,
we have

ZH
t =

∏
(i,j)∈E2

exp

[∫ t

0

(1− ξi,j(s−))λi,j(ys−)ds+
∫ T

0

ln(ξ(s−))N(ds,R, {(i, j)})
]
,

for some m×m matrix of Ht-predictable processes ξi,j(s) as in Definition 6.2.

HHT ∨L̄T
(Q |P ) = E

[
ln
(
dQ

dP

)
dQ

dP

]
= E[ZL

TZ
H
T (ln(ZL

T )) + ZL
TZ

H
T ln(ZH

T )]

= E[E[ZL
TZ

H
T ln(ZL

T ) |HT ] + E[ZL
TZ

H
T ln(ZH

T ) |HT ]]

= E[ZH
T E[ZL

T ln(ZL
T ) |HT ] + ZH

T ln(ZH
T )]

= E[ZH
T HHT

HT ∨L̄T
(Q̂ | P̂ ) + ZH

T ln(ZH
T )]

≥ E[ZH
T HHT

HT ∨L̄T
(P̄α | P̂ ) + ZH

T ln(ZH
T )]

= E


g(T ) +

∑
(i,j)∈E2

[∫ T

0

(1 − ξi,j(s−))λi,j(ys−)ds

+
∫ T

0

ln(ξi,j(s−))N(ds,R, {(i, j)})
]

×
∏

(i,j)∈E2

exp

[∫ T

0

(1 − ξi,j(s−))λi,j(s−)ds

+
∫ T

0

ln(ξi,j(s−))N(ds,R, {(i, j)})
]

= F (ξi,j)

≥ F (ξ̄i,j), (definition of ξ̄)

= E

[
ln

(
dP̄α�,ξ̄

dP

)
dP̄α�,ξ̄

dP

]

= HHT ∨L̄T
(P̄α�,ξ̄ |P ),

which proves the result.
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6.3. Siu and Yang Kernel pricing all risks

Let α be a piecewise constant stochastic process. We define the density process Zα
t

of a probability measure, Pα, on the filtration (Ht ∨ L̄t)t∈[0,T ], with an Esscher
transform with parameter α. The pricing kernel discussed here is based on the work
in Siu & Yang (2009), in the context of a Markov switching asset price process.

Definition 6.4. Let Zα be the following stochastic process:

dP̄α

dP

∣∣∣∣
Ht∨L̄t

= Zα
t =


E
[

e−
R

T
0 α(s)dRθ

s

E[e−
R T
0 αs−dRθ

s | θ0, y0]

∣∣∣∣∣Ht ∨ L̄t

]
if ∀ t ∈ (0, T ]

1 if t = 0,

where Rθ
t is the log price process in (6.16), induced by x from (4.1) in the context

of solution (4.2).

We note that from Lemma 5.1, one can retrieve any particular scalar con-
ditional characteristic function from the vector characteristic function as fol-
lows: Ψ(u, t, y, j, x) = exp[iu ln(x)]〈exp(

∫ t+y

y M(u, s)ds) · ej,1〉, where eθt =
(1θt=1, 1θt=2, . . . , 1θt=m)�. αt is the Esscher parameter process associated with the
probability measure P̄α.

Lemma 6.7. Let Zα
t be the process in Definition 6.4. Zα

t is an almost surely positive
martingale with unitary expectation.

Proof. We first prove that Zα
t is a martingale. Let 0 ≤ s ≤ t

E[Zα
t |Hs ∨ L̄s] = E

[
E

[
e−

R
T
0 αs−dRθ

s

E[e−
R

T
0 αs−dRθ

s | y0, θ0, L0]

∣∣∣∣∣Ht ∨ L̄t

]∣∣∣∣∣Hs ∨ L̄s

]

= E

[
e−

R
T
0 αs−dRθ

s

E[e−
R T
0 αs−dRθ

s | y0, θ0, L0]

∣∣∣∣∣Hs ∨ L̄s

]
, (Hs ∨ L̄s ⊂ Ht ∨ L̄t)

= Zα
s .

Therefore, Zα
t is a martingale. It follows that Zα

t has unitary expectation,

E(Zα
t ) = E[E(Zα

t ) |H0 ∨ L̄0] = E(Zα
0 ) = 1.

Noting that Zα
t is an almost surely positive process by construction, the lemma

follows.

From the preceding lemma, Zα
t is a density process. Hence, the Esscher transform

in (6.4) defines a probability measure P̄α equivalent to P . It remains to show that
P̄α is a martingale measure under a certain condition specified in the next lemma.

Lemma 6.8. Let Zα
t be from Definition 6.4 and x as defined in (4.1). M(u, y)

and M̄(u, y) are defined in (5.4) with modified log price process defined by

1550052-52



2nd Reading

November 26, 2015 17:27 WSPC/S0219-0249 104-IJTAF SPI-J071
1550052

Option Pricing with a Levy-Type Stochastic Dynamic Model

dRθ
t = αt− ln(βn(t)) + αt−dL

θ
t and dRθ

t = αt− ln(βn(t)) − rt−dt + (αt− + 1)dLθ
t ,

respectively, with Lθ defined in (3.2).
x̃t = e−

R
t
0 rs−dsxt is a (P̄α, (Ht ∨ L̄t)t∈[0,T ])-martingale if and only if〈

exp
[∫ t+y

y

M̄(−i, s)ds
]
· eθ0 ,1

〉

−
〈

exp
[∫ t+y

y

M(−i, s)ds
]�

· eθ0,1

〉
= 0 ∀ t ∈ [0, T ], θu ∈ E. (6.46)

Proof. Let 0 ≤ u ≤ t. From Momeya (2012), Siu & Yang (2009) and by the abstract
Bayes rule (Jacod & Shiryaev 1987), we have

E(Zα
t e

−R t
0 rs−dsxt |Hu ∨ L̄u) (6.47)

= e−
R u
0 rs−dsxu

E[e−
R

t
u

rs−ds+
R

t
u
(α(s−)+1)dRθ

s |Hu ∨ L̄u]

E[e
R t

u
αs−dRα

s |Hu ∨ L̄u]
. (6.48)

Hence, e−
R

t
0 rs−dsxt is a (P̄α, (Ht ∨ L̄t)t∈[0,T ])-martingale if and only if

E[e−
R

t
u

rs−ds+
R

t
0 (αs−+1)dRα

s |Hu ∨ L̄u]

E[e
R

t
0 αs−dRα

s |Hu ∨ L̄u]
= 1 ∀u, t ∈ [0, T ]. (6.49)

From Lemma 5.1 applied to dRθ
t = αt− ln(βn(t))+αt−dL

θ
t and dRθ

t = αt− ln(βn(t))−
rt−dt+ (αt− + 1)dLθ

t , respectively and on account of the Markov property and the
homogeneity of the process (θ, y), the numerator and the denominator of (6.49)
becomes

E[e−
R

t
u

rs−ds+
R

t
0 [α(s−)+1]dLα

s |Hu ∨ L̄u]

=
〈

exp
(∫ y+t−u

y

M̄(−i, s)ds
)
· eθ0 ,1

〉
and

E[e
R t
0 α(s−)dLα

s |Hu ∨ L̄u] =
〈

exp
(∫ y+t−u

y

M(−i, s)ds
)
· eθ0 ,1

〉
,

respectively, where,

Mp,q(−i, y)

=




−r(q) + (αq + 1)µ(q) +
1
2
(αq + 1)2σ2(q) +

∫
|z|>1

[e(αq+1)G(z,q) − 1]ν(q, dz)

+
∫
|z|≤1

[e(αq+1)G(z,q) − 1 − (αq + 1)G(z, q)]ν(q, dz) + λq,q(y) if p = q

λq,p(y)
∫

z∈R

e(αq+1)z b̄(z | q, p)dz otherwise
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and

Mp,q(−i, y)

=




αqµ(q) +
1
2
α2

qσ
2(q) +

∫
|z|≤1

[eαqG(z,q) − 1 − αqG(z, q)]ν(q, dz)

+
∫
|z|>1

[eαqG(z,q) − 1]ν(q, dz) + λq,q(y) if p = q

λq,p(y)
∫

z∈R

eαqz b̄(z | q, p)dz otherwise.

Hence, (6.49) becomes〈
exp
[∫ y+t−u

y

M̄(−i, s)ds
]
· eθ0 ,1

〉

−
〈

exp
[∫ y+t−u

y

M(−i, s)ds
]
· eθ0 ,1

〉
= 0, ∀u, t ∈ [0, T ], ∀ θu ∈ E,

(6.50)

which completes the proof of the lemma.

7. Option Pricing Formulas

In this section, we price a European style call option within the risk neutral pricing
theory Schachermayer (2010). We denote Q an equivalent martingale measure of
the historical probability measure P , relative to the price process x in (4.1). We
derive a PIDE extending the PDE in Black & Scholes (1973) satisfied by European
call prices. We also describe how two existing pricing methods blend seamlessly in
the context of this paper.

Definition 7.1. Let S be a function in L2(Ω, Q) defined on R
+ × R

+ into
R representing the payoff of a contingent claim; Q is a risk neutral probabil-
ity measure of the price process x defined by (4.1) with respect to the histori-
cal probability measure P ; K is a non-negative real number denoting the strike
price of a European type option contract with maturity T ; xT denotes the asset
price value at maturity; C is the Q-risk neutral option price function defined on
[0, T ] × R

+ × R
+ × [0, T ] × E × R

+ into R
+ and V denotes the discounted option

price process defined by V (t, T,K, yt, θt, xt) = e−
R

t
0 rs−dsC(t, T,K, yt, θt, xt).

Lemma 7.1. Let S be a random variable representing the payoff of a general Euro-
pean style contingent claim with maturity T and strike price K in Definition 7.1;
let Q be the risk neutral measure defined in Definition 7.1 and C is the Q-risk neu-
tral option price of a contingent claim. Then, the Q-risk neutral option price C of
a European contingent claim with maturity T, strike price K and payoff S can be
expressed

C(t, T,K, yt, θt, xt) = EQ(e−
R

T
t

rsdsS(xT ,K) | yt, θt, xt). (7.1)
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Proof. From Schachermayer (2010), the Q-risk neutral option price C at time t is
given by

C(t, T,K, yt, θt, xt) = EQ[e−
R

T
t

rsdsS(xT ,K) |Ht ∨ L̄t].

We note from Lemma 2.3 that the triplet (y, θ, x) is Markovian, hence

C(t, T,K, yt, θt, xt) = EQ[e−
R T

t
rsdsS(xT ,K) | yt, θt, xt],

which proves the result.

A partial integro differential equation (PIDE) satisfied by a European style
contingent claim with maturity T and payoff H is presented in the next lemma.

Lemma 7.2. Let Q, C and V be the risk neutral measure, the Q-risk neutral option
price function and the discounted option price process defined in 7.1, respectively.
Then V satisfies the following system of PIDE

∂V

∂s
+
∂V

∂y
+ µ(j)xs−

∂V

∂x
+

1
2
σ2(j)x2

s

∂2V

∂x2

+
∫
|z|≤1

[
V (s, T,K, ys, θs, xs− + xs−G(z, j))

− V (s, T,K, ys, j, xs− ) −G(z, j)xs−
∂V

∂x

]
ν(j, dz)

+
∫
|z|>1

[V (s, T,K, ys, θs, xs− + xs−H(z, θs))

−V (s, T,K, ys, θs, xs−)]ν(θs, dz)

+
∫

z∈R

∑
j �=i

λi,j(ys)V (s, T,K, ys, j, xs−ez)b̄(z | i, j)dz

+V (s, T,K, ys− , i, xs−)λj,j(y) = 0,

with terminal condition

V (T, T,K, yT , θT = j, xT ) = e−
R

T
0 r(θs)dsS(xT ,K), for j ∈ E.

Proof. From (7.1), the discounted price process could be expressed as follows:

V (t, T,K, y, j, x) = e−
R t
0 r(θs)dsC(t, T,K, y, j, x)

= EQ(e−
R
[0,T ] r(θs)dsS(xT ,K) | yt, θt, xt) (7.2)

V is a (Q, L̄t ∨ Ht))-Martingale since it is a Q-conditional expectation. We use the
law of iterated expectation and u ≤ t to prove it as follows:

E(V (t, T,K, y, j, x) | L̄u ∨ Hu)

= E(e−
R t
0 r(θs)dsC(t, T,K, y, j, x) | L̄u ∨ Hu)
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= E[e−
R

t
0 r(θs)dsE(e−

R
T
t

r(θs)dsS(x,K) | L̄t ∨ Ht) | L̄u ∨ Hu]

= E[E(e−
R

T
0 r(θs)dsS(x,K) | L̄t ∨ Ht) | L̄u ∨ Hu]

= E[e−
R

T
0 r(θs)dsS(x,K) | L̄u ∨ Hu]

= e−
R u
0 r(θs)dsE[e−

R T
u

r(θs)dsS(x,K) | L̄u ∨ Hu]

= V (t, T,K, y, j, x).

From Ito differential formula in Lemma 4.1, we have

dV (t, T,K, yt, θt, x(t)) = AV (t, T,K, yt− , θt− , x(t−))dt + Martingale Terms︸ ︷︷ ︸ .
As V is a martingale, the first term vanishes and (4.14), the following PIDE is
obtained:

∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x
+

1
2
σ2(θs−)x2

s

∂2V

∂x2

+
∫
|z|≤1

[
V (s, T,K, ys, θs, xs− + xs−G(z, θs)) − V (s, T,K, ys, θs, xs−)

−G(z, θs)xs−
∂V

∂x

]
ν(θs, dz)

+
∫
|z|>1

[V (s, T,K, ys, θs, xs− + xs−H(z, θs)) − V (s, T,K, ys, θs, xs−)]ν(θs, dz)

+
∫

z∈R

∑
j �=i

λi,j(ys)V (s, T,K, ys, j, xs−ez)b̄(z | i, j)dz

−V (s, T,K, ys− , i, xs−)λθs− ,j(ys) = 0, ∀ t ∈ [0, T ].

Hence, the proof is complete.

Definition 7.2. Let C̃ be a continuous function on [0, T ]×R
+ ×R × [0, T ]×E ×

R
+ into R

+ representing the modified European call option price; let Υ be the
characteristic function of C̃ with respect to its third variable, and k denotes the
logarithm of the positive real number K in Definition 7.1.

Remark 7.1. Assuming a deterministic interest rate r, a closed form formula for
the Fourier transform of a modified vanilla European call option price is known
Carr & Madan (1999). Let us denote C, C̃ and η the European call price, the
modified European call price of Carr and Madan type and a positive real number,
respectively, for the payoff function of a European call option S(xT ,K) = (xT −
K)+ = (eln(xT ) − ek)+, with k = ln(K). Further assume that∫ ∞

0

|C̃(t, T, k, j, y)|dk <∞, ∀ j ∈ E.
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Then the modified European call price defined by Carr and Madan is expressed as
follows:

C̃(t, T, k, yt, θt, x(t)) = eηEQ(e−
R

T
t

r(t)ds(eln(xT ) − ek)+ | yt, θt, xt). (7.3)

In the following lemma, we recall the characteristic function of the modified
European Carr and Madan type call option (Carr & Madan 1999).

Lemma 7.3. If Υ and Ψ(u, t, y0, θ0, x(0)) are the Fourier transform of C̃ defined
in Definition 7.2 and the conditional characteristic function of the log price process
defined in Lemma 5.1, respectively, then we have

Υ(T,w, y0, θ0 = j, x0)

=
e−

R T
0 rs−ds

(η + iw)(1 + η + iw)
Ψ(wk − ix0(1 + η), T, y0, θ0 = j, x0). (7.4)

Proof. The proof can be found in Carr & Madan (1999).

Remark 7.2. We note that in the case of a regime switching interest rate Momeya
(2012) uses the Carr and Madan type transformation to obtain the characteristic
function of European call option prices. The formula in Carr & Madan (1999) is
based on the characteristic function of occupation times which is known in closed
form when market states are described by a Markov Chain. We have derived the
characteristic function of the occupation times in Corollary 5.1 which allows us to
extend the results in Elliott & Osakwe (2006) and Momeya (2012) when market
states are described by a semi-Markov process.

In the context of a price process driven by the Brownian motion (Ghosh &
Goswami 2009), an integral option price formula is obtained. In the following result,
we present a similar pricing formula (Ghosh & Goswami 2009) in the context of
(4.1), where we assume that f j

s is the density of the increment of the log price
process in an interval of length s, whenever the semi-Markov process is in state j
for any j ∈ I(1,m) = E.

Lemma 7.4. An integral option pricing formula in the context of model (4.1) is
represented by the following formula:

C(t, yt, θt, xt) = P (t, yt, θt)Cθt(t, T,K, xt)

+Q(t, yt, θt)
∫ T−t

0

er(θt)up(t, yt, θt)
[∫ ∞

0

C̃(t+ u, 0, j, xt)du
]
dx,

(7.5)

with P (t, yt, θt) = 1−F (yt+T−t | θt)
1−F (yt | θt)

, 1 − P (t, yt, θt) = Q(t, yt, θt), p(t, yt, θt) =
f(yt+T−t | θt)
1−F (yt | θt)

and C̃(t + u, yt, j, xt) =
∑

θt+u=j,j �=θt−
C(t + u, yt, j, xt)f j

u(ln(x/St)),
where F (· | θt−) and f(· | θt−) are defined in Remark 2.1. Cθt is the Black–Scholes
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option price when the market is in state θt and C(t, yt, θt, xt) is short hand notation
for C(t, T,K, yt, θt, xt).

Proof. The lemma follows by imitating the proof of Theorem 3.1 of Ghosh &
Goswami (2009). Let V (t) = v(t, yt, θt, xt) defined as in Lemma 4.1, using the risk
neutral pricing formula, the tower Law of expectations, the identity 1 = 1Tn(t)+1≤1+
1Tn(t)+1>1 and the notations

E[V (t) | s, ys, θs, xs] = Es[V (t)],

E[V (t) | s, ys, θs, xs, Tn(t)+1 < T ] = E≤T
s [V (t)], t

E[V (t) | s, ys, θs, xs, Tn(t)+1 > T ] = E>T
s [V (t)]

E[V (t) | s, u, ys, yu, θs, θu, xs, xu] = Es,u[V (t)]

E[V (t) | s, u, ys, yu, θs, θu, xs, xu, Tn(t)+1 > T ] = E>T
s,u [V (t)]

E[V (t) | s, s+ u, ys, ys+u, θs, θs+u, xs, xs+u, τn(s) = yt + u] = Eτ=T
s,u [V (t)],

∀ s, t, u ∈ R+ and s < t, we obtain

C(t, yt, θt, xt)

= Et− [e
R T

t
r(θs)ds(xT −K)+]

= Et− [E[e
R T

t
r(θs)ds(xT −K)+ | yt, θt, xt, Tn(t)+1]]

= Et− [1(Tn(t)+1)>TE[e
R T

t
r(θs−)ds(xT −K)+ | yt, θt, xt, Tn(t)+1]]

+E[1Tn(t)+1≤TE[e
R T

t
r(θs−)ds(xT −K)+ | yt, θt, xt, Tn(t)+1]]

= P (Tn(t)+1 > T | yt− , θt− , xt−)E>T
t− [E[C(t, yt− , θt− , xt−) |Tn(t)+1]]

+P ((Tn(t)+1 ≤ T ) | yt− , θt− , xt−)E≤T
t− [E(C(t, yt− , θt− , xt−) |Tn(t)+1]]

= P (Tn(t)+1 > T | yt− , θt− , xt−)E[C(t, yt− , θt− , xt−) |Tn(t)+1 > T ]

+P (Tn(t)+1 ≤ T | yt− , θt− , xt−)E[C(t, yt− , θt− , xt−) |Tn(t)+1 ≤ T ]

= P (Tn(t)+1 > T | yt− , θt− , xt−)Cθt(t, xt) + P (Tn(t)+1 > T | yt− , θt− , xt−)

×E≤T
t− [E(C(t, yt− , θt− , xt−) | τn(t) = yt + u]]

= P (t, yt, θt)Cθt(t, xt) +Q(t, yt, θ + t)

×
∫ T−t

0

p(T − u, yt, θt)E[C(t, yt− , θt− , xt−) | τn(t) = yt + u]du

= P (t, yt, θt)Cθt(t, xt) +Q(t, yt, θt)
∫ T−t

0

p(t, yt, θt)Et+u,t

× [er(θt)uE[e
R T

t+u
r(θs−)ds(xT −K)+ | yt− , θt− , xt− , τn(t) = yt + u]]
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= P (t, yt, θt)Cθt(t, xt) +Q(t, yt, θt)
∫ T−t

0

Et[er(θt)up(T − u, yt, θt)

×Eτ=yt+u
t,u [e

R
T
t+u

r(θs−)ds(xT −K)+]]du

= P (t, yt, θt)Cθt(t, xt) +Q(t, yt, θt)
∫ T−t

0

er(θt)up(T − u, yt, θt)du

×
∫ ∞

0

∑
θt+u=j

j �=θt

E[C(t+ u, yt+u = 0, θt+u, xt−) | τn(t) = yt + u]

× f j
u(ln(x/St))dudx

= P (t, yt, θt)Cθt(t, xt) +Q(t, yt, θt)
∫ T−t

0

er(θt)up(T − u, yt, θt)

×
∫ ∞

0

C̃(t+ u, 0, j, xt)dudx.

In the following section, we provide a numerical application to exhibit the role,
scope and significance of the developed results. Furthermore, based on the options
on DJIA quoted on March 3, 2008, we also present calibration results. The data set
was retrieved from Deville (2007).

8. Numerical Applications

We present simulated European style call option prices and implied volatilities
derived from option prices generated by a semi-Markov switching exponential Lévy
pocess.

8.1. Simulations

Option prices derived in our framework are more flexible than option prices derived
from the more commonly used Markov regime switching exponential Lévy pro-
cesses. We also demonstrate that prices simulated in our framework produce implied
volatilities consistent with stylized facts of the option market, namely, the smile and
the smirk. The risk neutral measure considered in this section is the conditional
minimum entropy martingale measure developed in Sec. 6. Simulations of option
prices and implied volatilities will be performed from semi-Markov regime switch-
ing Black–Scholes (SMBS), semi-Markov regime switching Merton jump diffusion
(SMMJD) and semi-Markov regime switching normal inverse Gaussian (SMNIG)
processes. The choice of these three Lévy processes is rooted in the fact that they
highlight three important classes of Lévy processes: Diffusion processes, jump diffu-
sion processes and processes with infinite activity. At each market state we assume
j, H(j, z) = G(j, z) = z in (4.2) and the SMBS has no Lévy jump component, hence
its Lévy measure is ν(j, ·) = 0, ∀ j ∈ E. The diffusion coefficient at each state j is
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σ(j), ∀ j ∈ E. At each state j, the SMMJD has Lévy jumps arriving at a Poisson
rate with mean η(j); its jumps size is normally distributed with mean and standard
deviation ρ(j) and δ(j), respectively for any state j ∈ E. From Tankov (2003), it’s
Lévy measure is

ν(j, dz) =
η(j)

δ(j)
√

2π
exp

[
−1

2

(
z − ρ(j)

)2
δ2(j)

]
dz.

At each state j ∈ E, the SMNIG is a time changed Browian motion with drift rate
µ(j). The new time scale is defined by an inverse Gaussian process with parameters
δ(j) and ρ2(j) − η2(j). The SMNIG is a pure jump process and consequently does
not have diffusion component ie σ(j) = 0, ∀ j ∈ E. When the market is in state
j ∈ E, the characteristic function of the SMNIG, is expressed as follows:

φ(j, u) = exp[−δ
√
ρ2(j) − (η(j) + iu)2 −

√
ρ2(j) − η2(j)], with i =

√−1.

Under the risk neutral measure, the price jumps at times of regime changes κi,j are
assumed to follow the distributions:

κi,j =




1 − εi,j with probability pi,j

1 with probability 1 − pi,j − qi,j

1 + εi,j with probability qi,j .

(8.1)

The risk neutral condition (6.28) requires that EP α� (βn | θn−1, θn) = 1, ∀n ∈
I(1,∞). This implies that

pi,j = qi,j , ∀ (i, j) ∈ E2. (8.2)

From (8.1) and (8.2), the characteristic function of ln(κi,j) reads

E[eiu ln(κi,j)] = [pi,j(e−iu ln(1+εi,j) + eiu(1−ln εi,j) − 2) + 1],

εi,j ∈ [0, 1], pi,j ∈
[
0,

1
2

]
, ∀ (i, j) ∈ E2,

(8.3)

where the coefficient of u is i =
√−1 and the subscript “i” of κ, ε and p stand

for the ith state of the semi-Markov process. The sojourn time distribution of
the semi-Markov process is assumed to be a piecewise exponential distribution
approximating a two-parameter Weibull distribution. It is worth noting that piece-
wise exponential distributions are known to have piecewise constant intensities.
Knowing that Riemann integrable functions can be approximated almost every-
where by step functions, we can simulate prices in our framework with a wide
range of sojourn times. Let T � be the time horizon of the market, with T < T �,
where T is any option contract maturity time. We consider the following partition
0 = a0 < a1 < · · · < aM−1 = T � of [0, T �] and we denote aM = ∞. From the def-
inition of the Weibull distribution and (2.9), the Weibull intensity function can be
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approximated by the following piecewise constant semi-Markov intensity function
associated with the partition (a)M−1

k=0

λi,j(ys) =



pi,j

M−1∑
k=0

ϑi

ςi

(
a�

k

ςi

)ϑi−1

1[ak,ak+1)(ys) if i 
= j

−
m∑

j=1,j �=i

λi,j(ys) otherwise

=



αi,j

M−1∑
k=0

(a�
k)ϑi−11[ak,ak+1)(ys) if i 
= j

−
m∑

j=1,j �=i

λi,j(ys) otherwise,

(8.4)

∀ s ∈ [0, T ], with αi,j = pi,j
ϑi

ςϑ
i

and a�
k = ak+ak+1

2 , ∀ k ∈ I(0,M − 2). Figure 2 shows
that for the particular parameters chosen, the piecewise constant approximation of
the Weibull intensity is quite close to the actual Weibull intensity. In a market with
Markov regimes, intensities are assumed to be constant. This is quite a restrictive
assumption, since it implies that as time goes by, the market propensity for chang-
ing regimes stays constant even when market conditions change. It is indeed more
realistic to allow the intensity matrix to be time dependent and vary accross the
lifespan of the derivative contract. This is precisely the advantage of semi-Markov
over Markov market regimes, as semi-Markov intensities depend on the time spent
on the current state. It is for instance well known that markets pre and post 2007
financial crisis are quite different as the volatility has gone up a notch and prices have
become more erratic Manda (2010). We therefore expect switching rates between
market regimes in the post crisis market to be different. Option price simulations are
performed through inversion of the Fourier transform of the modified option price in
Carr & Madan (1999). Inversion is performed via the fractional Fourier transform
described in Chourdakis (2004), as it allows a greater flexibility in the choice of
the log strike grid parameter and the frequency grid parameter. The size of the log
strike grid and the frequency grid is set at N = 4096. The infinite integral in the
frequency domain is truncated at 512 and the domain of ln( K

xT
) is set to be [−1,+1].

Under this setting, the fractional parameter is ε = 1
2π × 512

4096 × 2
4096 ≈ 9.72× 10−6.

Throughout this section, we assume that the market has m = 4 distinct regimes,
xT = $100, the interest rate is constant across all states r = (0.05, 0.05, 0.05, 0.05),
the initial backward recurrence time y = 0.1 year, the time horizon of the mar-
ket is T � = 5 years, the time to maturity is set to T = 0.5 year for option price
simulations and T ∈ [0, 1.5] for “Implied volatility” surface simulations. The param-
eters specific to our framework, not accounted for in markets with Markov regimes
are the backward recurrence time y at time of pricing and the shape parameter
vector (ϑi)i∈E of the sojourn time distributions. It is therefore of interest to see
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Fig. 1. Weibull intensity versus sojourn time distribution intensity.

Fig. 2. Semi-Markov regime switching NIG option prices at all market regimes for different shape
parameters values.

how much difference those parameters induce when option prices from a market with
semi-Markov regimes are compared with option prices from a market with Markov
regimes ceteris paribus. The partition associated with the piecewise constant semi-
Markov conditional intensity considered (8.4) is a regular grid of [0, T �] where M =
61 with ak = k T �

M−1 , k ∈ I(0,M − 1). Figure 1 shows how well λ approximates
weibull intensities. This choice of M is rooted in the fact that financial performances
of firms are usually made available on a quarterly basis. We therefore consider three
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Fig. 3. Semi-Markov MJD option prices at all market regimes for different shape parameters values.

Fig. 4. Semi-Markov NIG option prices at all market regimes for different shape parameters values.

periods within each quarter: The earning month where the market likely (over)reacts
to reports, the post earning month with a possible market correction and the pre
earning month where the market is preparing for the next earning report. The
intensity of the semi-Markov process θt of Definition 2.1 is assumed constant within
each month. Parameter values chosen for simulations of option prices and volatility
surfaces are summarized in Tables 1–4, respectively. Option price simulations from
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Fig. 5. Comparison of simulated European call option prices derived from Markov and semi-Markov
switching MJD models.

Markov regime switching models and semi-Markov switching model with increasing
intensities are performed using ϑi = (1, 1, 1, 1) and ϑi = (2, 3, 8, 5), respectively. In
Figs. 2 and 3, one notices that deep in-the-money option prices for ϑi < 1, ∀ i ∈
I(1,m) and y = 0.1 year flirt with the $120 mark, while prices induced by ϑi > 1
and ϑi = 1, ∀ i ∈ I(1,m) lie below $100. In the presented simulated prices, it appears
that the initial backward recurrence time and the shape parameter of sojourn time
distribution do induce noticeable price differences between options in Markov and
semi-Markov market states. We also note price differences between market states
as shown in Figs. 2 and 3. On the other hand, we note that by changing the shape
parameter of the sojourn time distribution, semi-Markov prices prove to be more
exible than Markov prices as shown in Figs. 4 and 5. One recalls that the higher
the shape parameter values, the smaller the mean sojourn time of the market at
each regime and the smaller the regime change risk. This partially explains why
deep in-the-money options in Figs. 4 and 5 are cheaper as ϑ gets larger. As far as
implied volatilities are concerned, smiles, smirks and other shapes are seamlessly
reproduced as evidenced in Fig. 6.

8.2. Calibration

The Dow Jones Industrial Average Index (DJIA) is a performance indicator of
30 large public US companies that accounts for approximately 20% of the U.S.
market. We consider options quotes on the Dow Jones Industrial Average Index
(DJX) on March 3, 2008, as the global financial crisis was in full effect. We calibrate
the parameters of our models (SMBS and Markov BS) to market option prices in
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Fig. 6. Implied volatility surfaces from option prices generated by semi-Markov switching BS, MJD
and NIG respectively at the first market state.

Table 5. We use residual sum of squares (RSS) to compare the fit of both models.
The model parameters sought are chosen so as to minimize the sum of squared
differences between market options and model option prices. We assume thatm = 2;
the option contract has maturity time T = 47 days; the underlying stock does not
pay dividends and is currently valued at S = $122; the sojourn time intensities are
assumed to be a piecewise constant approximation of Weibull intensities as defined
in (8.4); the fractional parameter is given in Sec. 8.1 and the current backward
recurrence time is assumed to be y = 252 days. Calibration results obtained are

Table 5. DJX option quotes of March 3, 2008.

Strike price Strike S/K Prices (T = 47)

98 1.25 24.43
99 1.23 23.40

100 1.22 22.50
101 1.21 21.55
102 1.20 20.63
103 1.19 19.68
104 1.18 18.75
105 1.16 17.83
106 1.15 16.90
107 1.14 15.98
108 1.13 15.10
109 1.12 14.23
110 1.11 13.33
111 1.10 12.45
112 1.09 11.63
113 1.08 10.78
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Table 5. (Continued)

Strike price Strike S/K Prices (T = 47)

114 1.07 9.95
115 1.06 9.18
116 1.05 8.40
117 1.04 7.68
118 1.04 6.93
119 1.03 6.23
120 1.02 5.58
121 1.01 4.95
122 1.00 4.35
123 0.99 3.80
124 0.99 3.25
125 0.98 2.74
126 0.97 2.28
127 0.96 1.90
128 0.95 1.52

Table 6. Markov BS and SMBS parameter estimates.

Model (α̂0, α̂1) (ϑ̂0, ϑ̂1) (ε̂0, ε̂1) (p̂0, p̂1) (σ̂0, σ̂1) RSS

SMBS (70.85, 1.523) (26, 0.202) (0.008, 0.55) (0.001, 0.02) (0.212, 0.18) 2.07
Markov BS (79.03, 9.363) (1, 1) (0.176, 0.175) 3.73

Fig. 7. Markov BS: Calibrated versus observed prices.

summarized in Table 6 and plotted in Figs. 7 and 8. One note that the RSS is
considerably lower for semi-Markov regime switching models. In fact, the RSS is
reduced by 44%. The fit of SMBS is visibly better as shown in Figs. 7 and 8.
Moreover, the scale parameters of the Weibull shows that market option prices are
best explained by semi-Markov market regimes with ϑ1 = 26, ϑ2 = 0.202. These
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Fig. 8. SMBS: Calibrated versus observed prices.

shape parameter values show that state 1 and 2 have increasing and decreasing
intensities. More precisely, the longer the market stays in state 1, the more likely it
is to switch to state 2 and the longer the market stays in state 2 the more likely it
is to stay in state 2, respectively. A look at the discrete jump size also shows quite
a significant risk neutral probability (2%) of drop or jump in price of more than
50% when the market is in state 2. This is in line with the widespread fear and the
observed erratic market prices during the financial crisis. Indeed, on September 29,
2008, the DJIA suffered its biggest one-day price drop (7%) and a few month later,
November 13, 2008, the market registered its biggest one-day price jump (11%).
More importantly, the Dow Jones suffered a whopping 33% drop in 2008.

9. Conclusion

In this work, we proposed a theoretical framework for asset price models by devel-
oping a closed form an exponential Lévy under a semi-Markov switching process. In
addition, we established a few distributional properties of the price process in (4.1).
We derived an infinitesimal generator of the triplet (yt, θt, xt) and the character-
istic function of the log price process Lθ

t which allowed us to get a closed form
expression for the characteristic function of plain vanilla European style call option
prices. Such a characteristic function could prove to be useful in the calibration of
model parameters to market options prices through inverse Fourier transform, as
demonstrated in Sec. 8. Two problems of interest are currently being investigated:
(1) an evaluation of the effects of the backward recurrence time, the sojourn time
distribution and the jumps distribution on option prices induced by semi-Markov
switching asset price models; and (2) the pricing of exotic options in semi-Markov
market regimes.
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